Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 095202    DOI: 10.1088/0256-307X/33/9/095202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses
Guo-Bo Zhang1,2, N. A. M. Hafz2,3**, Yan-Yun Ma1,3**, Lie-Jia Qian2,3, Fu-Qiu Shao1, Zheng-Ming Sheng2,3,4
1College of Science, National University of Defense Technology, Changsha 410073
2Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240
4SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
Cite this article:   
Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma et al  2016 Chin. Phys. Lett. 33 095202
Download: PDF(1317KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
Received: 25 May 2016      Published: 30 September 2016
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/095202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/095202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo-Bo Zhang
N. A. M. Hafz
Yan-Yun Ma
Lie-Jia Qian
Fu-Qiu Shao
Zheng-Ming Sheng
[1]Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[2]Malka V 2012 Phys. Plasmas 19 055501
[3]Pukhov A and Meyer-ter-vehn J 2002 Appl. Phys. B 74 355
[4]Kostyukov I, Pukhov A and Kiselev S 2004 Phys. Plasmas 11 5256
[5]Zhang G B, Chen M, Luo J, Zeng M, Yuan T, Yu J Y, Ma Y Y, Yu T P, Yu L L, Weng S M and Sheng Z M 2016 J. Appl. Phys. 119 103101
[6]Davoine X, Lefebvre E, Rechatin C, Faure J and Malka V 2009 Phys. Rev. Lett. 102 065001
[7]Ge Z Y, Yin Y, Li S X, Yu M Y, Yu T P, Xu H, Zhuo H B, Ma Y Y, Shao F Q and Tian C L 2012 New J. Phys. 14 103015
[8]Burza M, Gonoskov A, Svensson K, Gonoskov A, Svensson K, Wojda F, Persson A, Hansson M, Genoud G, Marklund M, Wahlstr? m C G and Lundh O 2013 Phys. Rev. ST Accel. Beams 16 011301
[9]Eremin V, Malkov Y, Korolikhin V, Kiselev A, Skobelev S, Stepanov A and Andreev N 2012 Phys. Plasmas 19 093121
[10]Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 056109
Chen M, Esarey E, Schroeder C B, Geddes C G R and Leemans W P 2012 Phys. Plasmas 19 033101
[11]Pak A, Marsh K A, Martins S F, Lu W, Mori W B and Joshi C 2010 Phys. Rev. Lett. 104 025003
[12]Schroeder C B, Vay J L, Esarey E, Bulanov S S, Benedetti C, Yu L L, Chen M, Geddes C G R and Leemans W P 2014 Phys. Rev. ST Accel. Beams 17 101301
[13]Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M and Zhang J 2015 Sci. Rep. 5 14659
[14]Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403
Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M and Zhao N 2013 Acta Phys. Sin. 62 205203 (in Chinese)
Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M and Zhao N 2013 Acta Phys. Sin. 62 125205 (in Chinese)
[15]Vieira J, Martins S F, Pathak V B, Fonseca R A, Mori W B and Silva L O 2011 Phys. Rev. Lett. 106 225001
[16]Shen B F, Li Y L, Nemeth K, Shang H R, Chae Y, Soliday R, Crowell R, Frank E, Gropp W and Cary J 2007 Phys. Plasmas 14 053115
[17]Wu H C, Xie B S and Yu M Y 2010 Chin. Phys. Lett. 27 105201
[18]Zhang G B, Ma Y Y, Xu H, Hafz N A M, Yang X H, Chen M, Yu T P, Zou D B, Liu J X, Yan J F, Zhuo H B, Gan L F, Tian L C, Shao F Q, Yin Y and Kawata S 2015 Phys. Plasmas 22 083110
[19]Cole J M, Wood J C, Lopes N C, Poder K, Abel R L, Alatabi S, Bryant J S J, Jin A, Kneip S, Mecseki K, Symes D R, Mangles S P D and Najmudin Z 2015 Sci. Rep. 5 13244
[20]Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J and Zhang J 2006 Phys. Plasmas 13 110702
[21]Liu J X, Ma Y Y, Zhao J, Yu T P, Yang X H, Gan L F, Zhang G B, Yan J F, Zhuo H B, Liu J J, Zhao Y and Kawata S 2015 Phys. Plasmas 22 103102
[22]Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth Cs, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002
[23]Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[24]Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K and Lee J 2008 Nat. Photon. 2 571
Li S, Hafz N A M, Mirzaie M, Sokollik T, Zeng M, Chen M, Sheng Z M and Zhang J 2014 Opt. Express 22 29578
[25]Jin Z Y, Shen B F, Zhang X M, Wang F C, Wen M, Ji L L, Xu J C and Wang W P 2009 Chin. Phys. Lett. 26 125204
[26]Zou D B, Zhuo H B, Yu T P, Wu H C, Yang X H, Shao F Q, Ma Y Y, Yin Y and Ge Z Y 2015 Phys. Plasmas 22 023109
Zou D B, Zhuo H B, Yang X H, Yu T P, Shao F Q and Pukhov A 2015 Phys. Plasmas 22 063103
[27]Yu T P, Pukhov A, Sheng Z M, Liu F and Shvets G 2013 Phys. Rev. Lett. 110 045001
Yu T P, Sheng Z M, Pukhov A, Yin Y, Zhuo H B, Ma Y Y, Xu X H, Shao F Q and Zhou C T 2013 Plasma Phys. Control. Fusion 55 085021
[28]Heese C, Phillips C R, Gallmann L, Fejer M M and Keller U 2010 Opt. Lett. 35 2340
[29]Deng Y P, Schwarz A, Fattahi H, Ueffing M, Gu X, Ossiander M, Metzger T, Pervak V, Ishizuki H, Taira T, Kobayashi T, Marcus G, Krausz F, Kienberger R and Karpowicz N 2012 Opt. Lett. 37 4973
[30]Agostini P and DiMauro L F 2008 Contemp. Phys. 49 179
[31]Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J and Zhang J 2011 Opt. Lett. 36 2608
[32]Weisshaupt J, Juvé V, Holtz M, Ku S, Woerner M, Elsaesser T, Ali? auskas S, Pug?lys A and Baltu?ka A 2014 Nat. Photon. 8 927
[33]Ma Y Y, Chang W W, Yin Y, Cao L H and Yue Z W 2002 Chin. J. Comput. Phys. 19 311 (in Chinese)
[34]Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301
[35]Gahn C, Tsakiris G D, Pretzler G, Witte K J, Delfin C, Wahlstr? m C G and Habs D 2000 Appl. Phys. Lett. 77 2662
[36]Zhang L G, Shen B F, Xu J C, Ji L L, Zhang X M, Wang W P, Zhao X Y, Yi L Q, Yu Y H, Shi Y, Xu T J and Xu Z Z 2015 Phys. Plasmas 22 023101
[37]Thomas A G R 2010 Phys. Plasmas 17 056708
[38]Decker C D, Mori W B, Tzeng K C and Katsouleas T 1996 Phys. Plasmas 3 2047
[39]Pollock B B, Tsung F S, Albert F, Shaw J L, Clayton C E, Davidson A, Lemos N, Marsh K A, Pak A, Ralph J E, Mori W B and Joshi C 2015 Phys. Rev. Lett. 115 055004
Related articles from Frontiers Journals
[1] Shu-Kai He, Jin-Long Jiao, Zhi-Gang Deng, Feng Lu, Lei Yang, Fa-Qiang Zhang, Ke-Gong Dong, Wei Hong, Zhi-Meng Zhang, Bo Zhang, Jian Teng, Wei-Min Zhou, Yu-Qiu Gu. Generation of Ultrahigh-Velocity Collisionless Electrostatic Shocks Using an Ultra-Intense Laser Pulse Interacting with Foil-Gas Target[J]. Chin. Phys. Lett., 2019, 36(10): 095202
[2] Yi-Xing Geng, Qing-Liao, Yin-Ren Shou, Jun-Gao Zhu, Xiao-Han Xu, Min-Jian Wu, Peng-Jie Wang, Dong-Yu Li, Tong-Yang, Rong-Hao Hu, Da-Hui Wang, Yan-Ying Zhao, Wen Jun Ma, Hai-Yang Lu, Zhong-Xi Yuan, Chen-Lin, Xue-Qing Yan. Generating Proton Beams Exceeding 10MeV Using High Contrast 60TW Laser[J]. Chin. Phys. Lett., 2018, 35(9): 095202
[3] Yi-Ying Wu, Quan-Li Dong, Zhao-Hua Wang, Ping Liu, Cheng-Zhen Wang, Yi-Hui Zhang, Zheng-Ming Sheng, Jie Zhang. Electron Dynamics and Characteristics of Attosecond Electromagnetic Emissions in Relativistic Laser-Plasma Interactions[J]. Chin. Phys. Lett., 2018, 35(9): 095202
[4] Wei Song, Rong-Hao Hu, Yin-Ren Shou, Zheng Gong, Jin-Qing Yu, Chen Lin, Wen-Jun Ma, Yan-Yin Zhao, Hai-Yang Lu, Xue-Qing Yan. High-Yield High-Efficiency Positron Generation in High-$Z$ Metal Targets Irradiated by Laser Produced Electrons from Near-Critical Density Plasmas[J]. Chin. Phys. Lett., 2017, 34(8): 095202
[5] Jun Dong, Zhong-Gui Lu, Bo Zhang, Zhi-Tao Peng, Zhi-Hong Sun, Yan-Wen Xia, Hao-Yu Yuan, Jun Tang, De-Yan Zhu, Hua Liu, Jia-Kun Lv. Single-Shot Measurement of Transient Phase Shift Induced by Laser Wake[J]. Chin. Phys. Lett., 2017, 34(5): 095202
[6] Shuan Zhao, Chen Lin, Jia-Er Chen, Wen-Jun Ma, Jun-Jie Wang, Xue-Qing Yan. Using Target Ablation for Ion Beam Quality Improvement[J]. Chin. Phys. Lett., 2016, 33(03): 095202
[7] WANG Wei-Quan, YIN Yan, ZOU De-Bin, YU Tong-Pu, YANG Xiao-Hu, XU Han, YU Ming-Yang, MA Yan-Yun, ZHUO Hong-Bin, SHAO Fu-Qiu. Simulation of the Quasi-Monoenergetic Protons Generation by Parallel Laser Pulses Interaction with Foils[J]. Chin. Phys. Lett., 2014, 31(11): 095202
[8] SU Heng-Yi, HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, LU Wei. Quasi-Monoenergetic Electron Beam Generation from Nanothickness Solid Foils Irradiated by Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2014, 31(07): 095202
[9] ZHANG Shao-Hua, YU Xi-Long, CHEN Li-Hong, ZHANG Xin-Yu. Laser Diagnostics of Combustion Enhancement on a CH4/Air Bunsen Flame by Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2013, 30(8): 095202
[10] HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang, SHI Yi-Jin, ZHANG Shan. Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(2): 095202
[11] BAN Hong-Ye, GU Yan-Jun, KONG Qing, LI Ying-Ying, ZHU Zhen, S. Kawata. Quasi-monoenergetic Tens-of-MeV Proton Beams by a Laser-Illuminated Funnel-Like Target[J]. Chin. Phys. Lett., 2012, 29(3): 095202
[12] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 095202
[13] XU Miao-Hua**, LI Hong-Wei, LIU Bi-Cheng, LIU Feng, SU Lu-Ning, DU Fei, ZHANG Lu, ZHENG Yi, MA Jing-Long, David Neely, Paul McKenna, WANG Zhao-Hua, WEI Zhi-Yi, YAN Xue-Qing, LI Yu-Tong**, LI Ying-Jun, ZHANG Jie, . Development of a Real-Time Ion Spectrometer with a Scintillator for Laser-Driven Ion Acceleration Experiments[J]. Chin. Phys. Lett., 2011, 28(9): 095202
[14] XIA Chang-Quan**, DENG Ai-Hua, LIU Li, WANG Wen-Tao, LU Hai-Yang, WANG Cheng, LIU Jian-Sheng . Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime[J]. Chin. Phys. Lett., 2011, 28(8): 095202
[15] WU Tao, WANG Xin-Bing** . Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass[J]. Chin. Phys. Lett., 2011, 28(5): 095202
Viewed
Full text


Abstract