PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses |
Guo-Bo Zhang1,2, N. A. M. Hafz2,3**, Yan-Yun Ma1,3**, Lie-Jia Qian2,3, Fu-Qiu Shao1, Zheng-Ming Sheng2,3,4 |
1College of Science, National University of Defense Technology, Changsha 410073 2Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 3Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 4SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
|
|
Cite this article: |
Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma et al 2016 Chin. Phys. Lett. 33 095202 |
|
|
Abstract We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
|
|
Received: 25 May 2016
Published: 30 September 2016
|
|
PACS: |
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
|
|
|
[1] | Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 | [2] | Malka V 2012 Phys. Plasmas 19 055501 | [3] | Pukhov A and Meyer-ter-vehn J 2002 Appl. Phys. B 74 355 | [4] | Kostyukov I, Pukhov A and Kiselev S 2004 Phys. Plasmas 11 5256 | [5] | Zhang G B, Chen M, Luo J, Zeng M, Yuan T, Yu J Y, Ma Y Y, Yu T P, Yu L L, Weng S M and Sheng Z M 2016 J. Appl. Phys. 119 103101 | [6] | Davoine X, Lefebvre E, Rechatin C, Faure J and Malka V 2009 Phys. Rev. Lett. 102 065001 | [7] | Ge Z Y, Yin Y, Li S X, Yu M Y, Yu T P, Xu H, Zhuo H B, Ma Y Y, Shao F Q and Tian C L 2012 New J. Phys. 14 103015 | [8] | Burza M, Gonoskov A, Svensson K, Gonoskov A, Svensson K, Wojda F, Persson A, Hansson M, Genoud G, Marklund M, Wahlstr? m C G and Lundh O 2013 Phys. Rev. ST Accel. Beams 16 011301 | [9] | Eremin V, Malkov Y, Korolikhin V, Kiselev A, Skobelev S, Stepanov A and Andreev N 2012 Phys. Plasmas 19 093121 | [10] | Chen M, Sheng Z M, Ma Y Y and Zhang J 2006 J. Appl. Phys. 99 056109 | | Chen M, Esarey E, Schroeder C B, Geddes C G R and Leemans W P 2012 Phys. Plasmas 19 033101 | [11] | Pak A, Marsh K A, Martins S F, Lu W, Mori W B and Joshi C 2010 Phys. Rev. Lett. 104 025003 | [12] | Schroeder C B, Vay J L, Esarey E, Bulanov S S, Benedetti C, Yu L L, Chen M, Geddes C G R and Leemans W P 2014 Phys. Rev. ST Accel. Beams 17 101301 | [13] | Mirzaie M, Li S, Zeng M, Hafz N A M, Chen M, Li G Y, Zhu Q J, Liao H, Sokollik T, Liu F, Ma Y Y, Chen L M, Sheng Z M and Zhang J 2015 Sci. Rep. 5 14659 | [14] | Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403 | | Zhang G B, Zou D B, Ma Y Y, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yin Y, Yu T P, Tian C L, Gan L F, Ouyang J M and Zhao N 2013 Acta Phys. Sin. 62 205203 (in Chinese) | | Zhang G B, Ma Y Y, Zou D B, Zhuo H B, Shao F Q, Yang X H, Ge Z Y, Yu T P, Tian C L, Ouyang J M and Zhao N 2013 Acta Phys. Sin. 62 125205 (in Chinese) | [15] | Vieira J, Martins S F, Pathak V B, Fonseca R A, Mori W B and Silva L O 2011 Phys. Rev. Lett. 106 225001 | [16] | Shen B F, Li Y L, Nemeth K, Shang H R, Chae Y, Soliday R, Crowell R, Frank E, Gropp W and Cary J 2007 Phys. Plasmas 14 053115 | [17] | Wu H C, Xie B S and Yu M Y 2010 Chin. Phys. Lett. 27 105201 | [18] | Zhang G B, Ma Y Y, Xu H, Hafz N A M, Yang X H, Chen M, Yu T P, Zou D B, Liu J X, Yan J F, Zhuo H B, Gan L F, Tian L C, Shao F Q, Yin Y and Kawata S 2015 Phys. Plasmas 22 083110 | [19] | Cole J M, Wood J C, Lopes N C, Poder K, Abel R L, Alatabi S, Bryant J S J, Jin A, Kneip S, Mecseki K, Symes D R, Mangles S P D and Najmudin Z 2015 Sci. Rep. 5 13244 | [20] | Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J and Zhang J 2006 Phys. Plasmas 13 110702 | [21] | Liu J X, Ma Y Y, Zhao J, Yu T P, Yang X H, Gan L F, Zhang G B, Yan J F, Zhuo H B, Liu J J, Zhao Y and Kawata S 2015 Phys. Plasmas 22 103102 | [22] | Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth Cs, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002 | [23] | Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229 | [24] | Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K and Lee J 2008 Nat. Photon. 2 571 | | Li S, Hafz N A M, Mirzaie M, Sokollik T, Zeng M, Chen M, Sheng Z M and Zhang J 2014 Opt. Express 22 29578 | [25] | Jin Z Y, Shen B F, Zhang X M, Wang F C, Wen M, Ji L L, Xu J C and Wang W P 2009 Chin. Phys. Lett. 26 125204 | [26] | Zou D B, Zhuo H B, Yu T P, Wu H C, Yang X H, Shao F Q, Ma Y Y, Yin Y and Ge Z Y 2015 Phys. Plasmas 22 023109 | | Zou D B, Zhuo H B, Yang X H, Yu T P, Shao F Q and Pukhov A 2015 Phys. Plasmas 22 063103 | [27] | Yu T P, Pukhov A, Sheng Z M, Liu F and Shvets G 2013 Phys. Rev. Lett. 110 045001 | | Yu T P, Sheng Z M, Pukhov A, Yin Y, Zhuo H B, Ma Y Y, Xu X H, Shao F Q and Zhou C T 2013 Plasma Phys. Control. Fusion 55 085021 | [28] | Heese C, Phillips C R, Gallmann L, Fejer M M and Keller U 2010 Opt. Lett. 35 2340 | [29] | Deng Y P, Schwarz A, Fattahi H, Ueffing M, Gu X, Ossiander M, Metzger T, Pervak V, Ishizuki H, Taira T, Kobayashi T, Marcus G, Krausz F, Kienberger R and Karpowicz N 2012 Opt. Lett. 37 4973 | [30] | Agostini P and DiMauro L F 2008 Contemp. Phys. 49 179 | [31] | Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J and Zhang J 2011 Opt. Lett. 36 2608 | [32] | Weisshaupt J, Juvé V, Holtz M, Ku S, Woerner M, Elsaesser T, Ali? auskas S, Pug?lys A and Baltu?ka A 2014 Nat. Photon. 8 927 | [33] | Ma Y Y, Chang W W, Yin Y, Cao L H and Yue Z W 2002 Chin. J. Comput. Phys. 19 311 (in Chinese) | [34] | Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301 | [35] | Gahn C, Tsakiris G D, Pretzler G, Witte K J, Delfin C, Wahlstr? m C G and Habs D 2000 Appl. Phys. Lett. 77 2662 | [36] | Zhang L G, Shen B F, Xu J C, Ji L L, Zhang X M, Wang W P, Zhao X Y, Yi L Q, Yu Y H, Shi Y, Xu T J and Xu Z Z 2015 Phys. Plasmas 22 023101 | [37] | Thomas A G R 2010 Phys. Plasmas 17 056708 | [38] | Decker C D, Mori W B, Tzeng K C and Katsouleas T 1996 Phys. Plasmas 3 2047 | [39] | Pollock B B, Tsung F S, Albert F, Shaw J L, Clayton C E, Davidson A, Lemos N, Marsh K A, Pak A, Ralph J E, Mori W B and Joshi C 2015 Phys. Rev. Lett. 115 055004 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|