Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 094208    DOI: 10.1088/0256-307X/33/9/094208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Optimization Design of Electromagnetic Nihility Nanoparticles
Ya-Ming Xie1,2, Chang-Yu Liu3, Ze-Jun Ding4,1, Zhi-Guo Wang3,2**
1Department of Physics, University of Science and Technology of China, Hefei 230026
2Beijing Computational Science Research Center, Beijing 100193
3School of Physics Science and Engineering, Tongji University, Shanghai 200092
4Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026
Cite this article:   
Ya-Ming Xie, Chang-Yu Liu, Ze-Jun Ding et al  2016 Chin. Phys. Lett. 33 094208
Download: PDF(651KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nihility material is a medium whose relative permittivity and permeability tend to zero simultaneously. In this work, comparing with the scattering properties of perfect nihility nanoparticles (made from nihility material), we provide an optimization design of electromagnetic nihility nanoparticles, which is a coated hybrid nanosphere constituted by commutative $\varepsilon$-negative (ENG) and $\mu$-negative (MNG) media. Compared to a single ENG or MNG nanosphere, it is found that the total and back scattering spectra of coated hybrid nanospheres are much closer to those of perfect nihility nanospheres. Moreover, it is observed that the scattered electromagnetic field distribution of coated hybrid nanospheres is identical to that of perfect nihility nanospheres. These results indicate that the combination of commutative ENG and MNG media can constitute a composite structure which gives the closest approximation of electromagnetic scattering of perfect nihility nanospheres in a wide frequency range.
Received: 15 May 2016      Published: 30 September 2016
PACS:  42.25.Fx (Diffraction and scattering)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/094208       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/094208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ya-Ming Xie
Chang-Yu Liu
Ze-Jun Ding
Zhi-Guo Wang
[1]Sarychev A K and Shalaev V M 2007 Electrodynamics of Metamaterials (Singapore: World Scientific)
[2]Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3]Monticone F and Alù A 2014 Chin. Phys. B 23 047809
[4]Alù A and Engheta N 2006 J. Opt. Soc. Am. B 23 571
[5]Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[6]Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[7]Yuan H K, Chettiar U K, Cai W, Kildishev A V, Boltasseva A, Drachev V P and Shalaev V M 2007 Opt. Express 15 1076
[8]Hao J, Yan W and Qiu M 2010 Appl. Phys. Lett. 96 101109
[9]Huang X, Lai Y, Hang Z H, Zheng H and Chan C T 2011 Nat. Mater. 10 582
[10]Enoch S, Tayeb G, Sabouroux P, Guérin N and Vincent P 2002 Phys. Rev. Lett. 89 213902
[11]Alù A, Silveirinha M G, Salandrino A and Engheta N 2007 Phys. Rev. B 75 155410
[12]Li Y, Kita S, Mu?oz P, Reshef O, Vulis D I, Yin M, Lon?ar M and Mazur E 2015 Nat. Photon. 9 738
[13]Lakhtakia A 2001 Int. J. Infrared Millimeter Waves 22 1731
[14]Lakhtakia A 2002 Int. J. Infrared Millimeter Waves 23 339
[15]Ziolkowski R W 2004 Phys. Rev. E 70 046608
[16]Nguyen V C, Chen L and Halterman K 2010 Phys. Rev. Lett. 105 233908
[17]Lakhtakia A 2006 Microwave Opt. Technol. Lett. 48 895
[18]Lakhtakia A and Geddes III J B 2007 AEU-Int. J. Electron. Commun. 61 62
[19]Silveirinha M and Engheta N 2007 Phys. Rev. B 75 075119
[20]Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P and Valentine J 2013 Nat. Photon. 7 791
[21]Mie G 1908 Ann. Phys. (Berlin Germany) 330 377
[22]Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons)
[23]Kerker M, Wang D S and Giles C L 1983 J. Opt. Soc. Am. 73 765
Related articles from Frontiers Journals
[1] Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao, Peng-Cheng Zhao, Xia Zhang, Yue Pan, Yongnan Li, Chenghou Tu, and Hui-Tian Wang. Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry[J]. Chin. Phys. Lett., 2020, 37(12): 094208
[2] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 094208
[3] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 094208
[4] Yingchun Ding, Xinjing Lv, Youquan Jia, Bin Zhang, Zhaoyang Chen, Qiang Liu. Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method[J]. Chin. Phys. Lett., 2020, 37(2): 094208
[5] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 094208
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 094208
[7] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 094208
[8] Yi Ruan, Kan Li, Qiang Lin, Ting Zhang. Tip-Nanoparticle Near-Field Coupling in Scanning Near-Field Microscopy by Coupled Dipole Method[J]. Chin. Phys. Lett., 2018, 35(4): 094208
[9] Yi-Peng Zheng, Jin-Hai Si, Wen-Jiang Tan, Xiao-Jing Liu, Jun-Yi Tong, Xun Hou. Imaging Transparent Objects in a Turbid Medium Using a Femtosecond Optical Kerr Gate[J]. Chin. Phys. Lett., 2017, 34(10): 094208
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 094208
[11] Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang, Dong-Xiang Zhang, Xin Xu, Jia-Sheng Ye, Yan Zhang, Dong-Mei Li, Qing-Bo Meng, Li Pan, Guo-Zhen Yang. Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics[J]. Chin. Phys. Lett., 2016, 33(09): 094208
[12] Yang Miao, Can Wu, Ning Wang, Jia-Qi You. Angle Compensation and Asymmetry Effect of Light Diffracted by Millimeter Liquid Surface Slosh Wave[J]. Chin. Phys. Lett., 2016, 33(07): 094208
[13] Zhao-Hui Li, Jian-Qi Zhang, De-Lian Liu, Xiao-Rui Wang. Numerical Evaluation of Effect of Motion of Samples on Ptychographic Imaging and Solution with a Random Phase Modulator[J]. Chin. Phys. Lett., 2016, 33(02): 094208
[14] Tuo Li, Yi-Shi Shi. Attack on Optical Double Random Phase Encryption Based on the Principle of Ptychographical Imaging[J]. Chin. Phys. Lett., 2016, 33(01): 094208
[15] HUANG Hui-Ling, CHEN Zi-Yang, SUN Cun-Zhi, LIU Ji-Lin, PU Ji-Xiong. Light Focusing through Scattering Media by Particle Swarm Optimization[J]. Chin. Phys. Lett., 2015, 32(10): 094208
Viewed
Full text


Abstract