Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 094207    DOI: 10.1088/0256-307X/33/9/094207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Spectrum-Splitting Diffractive Optical Element of High Concentration Factor and High Optical Efficiency for Three-Junction Photovoltaics
Dong-Feng Lin1,2, Bao-Gang Quan1, Qiu-Lin Zhang1,3, Dong-Xiang Zhang1,3, Xin Xu1,2, Jia-Sheng Ye4, Yan Zhang4, Dong-Mei Li1,2**, Qing-Bo Meng1,2**, Li Pan5, Guo-Zhen Yang1,3**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Key Laboratory for Renewable Energy, Chinese Academy of Sciences; Beijing Key Laboratory for New Energy Materials and Devices; and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3Laboratory of Optical Physics, Chinese Academy of Sciences, Beijing 100190
4Department of Physics, Capital Normal University; Beijing Key Laboratory for THz Spectroscopy and Imaging, Key Laboratory of THz Optoelectronics, Ministry of Education, Beijing 100048
5State Key Lab of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209
Cite this article:   
Dong-Feng Lin, Bao-Gang Quan, Qiu-Lin Zhang et al  2016 Chin. Phys. Lett. 33 094207
Download: PDF(1124KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A spectrum-splitting and beam-concentrating (SSBC) diffractive optical element (DOE) for three-junction photovoltaics (PV) system is designed and fabricated by five-circle micro-fabrication. The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane, which can be directly utilized by suitable spectrum-matching solar cells. The system concentration factor reaches 12$\times$. Moreover, the designed wavelengths (450 nm, 550 nm and 650 nm) are spatially distributed on the focal plane, in good agreement with the theoretical results. The average optical efficiency of all the cells over the three designed wavelengths is 60.07%. The SSBC DOE with a high concentration factor and a high optical efficiency provides a cost-effective approach to achieve higher PV conversion efficiencies.
Received: 25 July 2016      Published: 30 September 2016
PACS:  42.15.Eq (Optical system design)  
  42.25.Fx (Diffraction and scattering)  
  42.79.Ek (Solar collectors and concentrators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/094207       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/094207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Feng Lin
Bao-Gang Quan
Qiu-Lin Zhang
Dong-Xiang Zhang
Xin Xu
Jia-Sheng Ye
Yan Zhang
Dong-Mei Li
Qing-Bo Meng
Li Pan
Guo-Zhen Yang
[1]Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[2]Fraunhofer Institute for Solar Energy Systems, http://www.sharp-world.com/corporate/news/120531.html
[3]Dorodnyy A, Shklover V, Braginsky L, Hafnera C and Leutholda J 2015 Sol. Energ. Mat. Sol. C 136 120
[4]Green M A, Keevers M J, Thomas L, Lasich J B, Emery K and King R R 2015 Prog. Photovoltaics 23 685
[5]Kinoshita T, Nonomura K, Jeon N J, Giordano F, Abate A, Uchida S, Kubo T, Seok S I I, Nazeeruddin M K, Hagfeldt A, Gr?tzel M and Segawa H 2015 Nat. Commun. 6 8834
[6]Uzu H, Ichikawa M, Hino M, Nakano K, Meguro T, Hernández J L, Kim H S, Park N G and Yamamoto K 2015 Appl. Phys. Lett. 106 013506
[7]Mojiri A, Taylor R, Thomsen E and Rosengarten G 2013 Renewable Sustainable Energy Rev. 28 654
[8]McCambridge J D, Steiner M A, Unger B L, Emery K A, Christensen E L, Wanlass M W, Gray A L, Takacs L, Buelow R, McCollum T A, Ashmead J W, Schmidt G R, Haas A W, Wilcox J R, Meter J V, Gray J L, Moore D T, Barnett A M and Schwartz R J 2011 Prog. Photovoltaics 19 352
[9]Stefancich M, Zayan A, Chiesa M, Rampino S, Roncati D, Kimerling L and Michel J 2012 Opt. Express 20 9004
[10]Mitchell B, Peharz G, Siefer G, Peters M, Gandy T, Goldschmidt J C, Benick J, Glunz S W, Bett A W and Dimroth F 2011 Prog. Photovoltaics 19 61
[11]Kim S, Kasashima S, Sichanugrist P, Kobayashi T, Nakada T and Konagai M 2013 Sol. Energy Mater. Sol. Cells 119 214
[12]Ludman J E, Riccobono J, Semenova I V, Reinhand N O, Tai W, Li X, Syphers G, Rallis E, Sliker G and Martín J 1997 Sol. Energy 60 1
[13]Zhang D, Castro J M and Kostuk R K 2011 J. Photon. Energy 1 015505
[14]Kim G, Domínguez-Caballero J A, Lee H, Friedman D J and Menon R 2013 Phys. Rev. Lett. 110 123901
[15]Vorndran S, Russo J M, Wu Y, Pelaez S A and Kostuk R K 2015 Opt. Express 23 A1512
[16]Mohammad N, Wang P, Friedman D J and Menon R 2014 Opt. Express 22 A1519
[17]Wang P, Dominguez-Caballero J A, Friedman D J and Menon R 2015 Prog. Photovoltaics 23 1073
[18]Ye J, Wang J, Huang Q, Dong B, Zhang Y and Yang G 2013 Chin. Phys. B 22 034201
[19]Wang J, Ye J, Huang Q, Xu X, Li D, Meng Q and Yang G 2014 Chin. Phys. B 23 044211
Related articles from Frontiers Journals
[1] Bo Peng, Shuo Yan, Dali Cheng, Danying Yu, Zhanwei Liu, Vladislav V. Yakovlev, Luqi Yuan, and Xianfeng Chen. Optical Neural Network Architecture for Deep Learning with Temporal Synthetic Dimension[J]. Chin. Phys. Lett., 2023, 40(3): 094207
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 094207
[3] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 094207
[4] Yang Miao, Xiang Guo, Xiao-Jun Zhang. Visualization of Fiber Moving in Air Tunnel with Velocity Gradient[J]. Chin. Phys. Lett., 2020, 37(3): 094207
[5] Ke-Ling Gong, Jian Xu, Lin Zhang, Ya-Ding Guo, Bao-Shan Wang, Yang Li, Shuai Li, Zhong-Zheng Chen, Lei Yuan, Yang Kou, Yi-Ting Xu, Qin-Jun Peng, Zu-Yan Xu. High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror[J]. Chin. Phys. Lett., 2019, 36(7): 094207
[6] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 094207
[7] Yang Chen, Yu-Fei Wang, Hong-Wei Qu, Yu-Fang Zhang, Yun Liu, Xiao-Long Ma, Xiao-Jie Guo, Peng-Chao Zhao, Wan-Hua Zheng. High Coupling Efficiency of the Fiber-Coupled Module Based on Photonic-Band-Crystal Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(7): 094207
[8] Lei Liu, Shou-Huan Zhou, Yang Liu, Zhe Wang, Gang Wang, Hong Zhao. The 5.2kW Nd:YAG Slab Amplifier Chain Seeded by Nd:YVO$_{4}$ Innoslab Laser[J]. Chin. Phys. Lett., 2017, 34(6): 094207
[9] Lei Hou, Xiao-Wei Han, Lei Yang, Wei Shi. Terahertz Real-Time Off-Axis Digital Holography with Zoom Function[J]. Chin. Phys. Lett., 2017, 34(5): 094207
[10] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 094207
[11] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 094207
[12] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 094207
[13] WANG Zhong-Kai, HU Dong, NIU Lin-Xiao, ZHANG Jia-Hua, CHEN Xu-Zong, ZHOU Xiao-Ji. The Mode Matching of Hybrid Trap by Frequency Calibration[J]. Chin. Phys. Lett., 2015, 32(5): 094207
[14] HE Tao, YANG Su-Hui, Miguel Ángel Muñoz, ZHANG Hai-Yang, ZHAO Chang-Ming, ZHANG Yi-Chen, XU Peng. High-Power High-Efficiency Laser Power Transmission at 100 m Using Optimized Multi-Cell GaAs Converter[J]. Chin. Phys. Lett., 2014, 31(10): 094207
[15] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 094207
Viewed
Full text


Abstract