Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 090501    DOI: 10.1088/0256-307X/33/9/090501
GENERAL |
Uncertainty Quantification of Numerical Simulation of Flows around a Cylinder Using Non-intrusive Polynomial Chaos
Yan-Jin Wang**, Shu-Dao Zhang
Institute of Applied Physics and Computational Mathematics, Beijing 100094
Cite this article:   
Yan-Jin Wang, Shu-Dao Zhang 2016 Chin. Phys. Lett. 33 090501
Download: PDF(903KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.
Received: 13 April 2016      Published: 30 September 2016
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  47.52.+j (Chaos in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/090501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan-Jin Wang
Shu-Dao Zhang
[1]Bearman P W 2011 J. Fluids Struct. 27 648
[2]Matsumato M 1999 J. Fluids Struct. 13 791
[3]Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477
[4]Pinar E, Ozkan G M, Durhasan T, Aksoy M M et al 2015 J. Fluids Struct. 55 52
[5]Takagi S, Og?uz H N, Zhang Z and Prosperetti A 2003 J. Comput. Phys. 187 371
[6]Chang K and Constantinescu G 2015 J. Fluid Mech. 776 161
[7]Fishman G S 1996 Monte Carlo: Concepts, Algorithms and Applications (New York: Springer-Verlag)
[8]Myers R H, Montgeomery D C and Anderson-Cook C M 2009 Response Surface Methodology, (New York: Wiley) 3rd edn
[9]Zhang D 2002 Stochastic Methods for Flow in Porous Media (New York: Academic Press)
[10]Homma T and Saltelli A 1996 Reliab. Eng. Syst. Saf. 52 1
[11]Petras K 2000 Adv. Comput. Math. 12 71
[12]Faragher J 2004 Probabilistic Methods for the Quantification of Uncertainty and Error in Computational Fluid Dynamics Simulations DSTO-TR-1633
[13]Mathelin L, Hussaini M Y et al 2003 The 16th AIAA Computational Fluid Dynamics Conference (Orlando, Florida, AIAA 2003-4240)
[14]Tao T and Zhou T 2015 Sci. Sin. Math. 45 891(in Chinese)
[15]Wiener N 1938 Am. J. Math. 60 897
[16]Xiu D and Karniadakis G E 2002 SIAM J. Sci. Comput. 24 619
[17]Li R and Ghanem R 1998 Probab. Eng. Mech. 13 125
[18]Fossantos-Uzarralde P J and Guittel A 2008 Nucl. Data Sheets 109 2894
[19]Wang X D and Kang S 2010 Sci. Chin. Technol. Sci. 53 2853
[20]Jones B A and Doostan A 2013 Adv. Space Res. 52 1860
[21]Hosder S, Walters R W and Perez Z 2006 The 44th AIAA Aerospace Sciences Meeting and Exhibition (Reno, NV)
[22]Wirasaet D, Kubatko E J, Michoski C E et al 2014 Comput. Methods Appl. Mech. Eng. 270 113
[23]Hesthaven J S and Warburton T 2008 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Application (New York: Springer-Verlag)
[24]Sch?fer M and Turek S 1996 Flow Simulation with High-Peformance Computers II} (Braunschweig: Vieweg & Sohn) p 547
[25]Xiu D 2010 Numerical Methods for Stochastic Computations: A Spectral Method Approach (Princeton: Princeton University Press)
[26]Le Ma?tre O P and Knio O M 2010 Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics (New York: Springer-Verlag)
[27]Peng J, Hampton J and Doostan A 2016 J. Comput. Phys. 310 440
[28]Doostan A and Owhadi H 2011 J. Comput. Phys. 230 3015
[29]Bieri M and Schwab C 2009 Comput. Methods Appl. Mech. Eng. 198 1149
[30]Todor R A and Schwab C 2006 IMA J. Numer. Anal. 27 232
[31]Yan L, Guo L and Xiu D 2012 Int. J. Uncertainty Quantif. 2 279
Related articles from Frontiers Journals
[1] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 090501
[2] Chu-Han Wang, Le Fang. A Closure for Isotropic Turbulence Based on Extended Scale Similarity Theory in Physical Space[J]. Chin. Phys. Lett., 2018, 35(8): 090501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 090501
[4] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 090501
[5] Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 090501
[6] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 090501
[7] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 090501
[8] MIN Fu-Hong, SHAO Shu-Yi, HUANG Wen-Di, WANG En-Rong. Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System[J]. Chin. Phys. Lett., 2015, 32(03): 090501
[9] Rodrigo A. da Silva, Paulo C. Rech. A Parameter-Space Analysis of the Rikitake System[J]. Chin. Phys. Lett., 2013, 30(12): 090501
[10] WANG Guang-Yi, HE Jie-Ling, YUAN Fang, PENG Cun-Jian. Dynamical Behaviors of a TiO2 Memristor Oscillator[J]. Chin. Phys. Lett., 2013, 30(11): 090501
[11] MIN Fu-Hong . Function Projective Synchronization for Two Gyroscopes under Specific Constraints[J]. Chin. Phys. Lett., 2013, 30(7): 090501
[12] Amanda C. Mathias, Paulo C. Rech. Changes in the Dynamics of a Rössler Oscillator by an External Forcing[J]. Chin. Phys. Lett., 2013, 30(3): 090501
[13] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 090501
[14] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 090501
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 090501
Viewed
Full text


Abstract