Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 090304    DOI: 10.1088/0256-307X/33/9/090304
GENERAL |
Hybrid of Quantum Phases for Induced Dipole Moments
Kai Ma**
School of Physics Science, Shaanxi University of Technology, Hanzhong 723000
Cite this article:   
Kai Ma 2016 Chin. Phys. Lett. 33 090304
Download: PDF(278KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by the induced electric dipole has the same form as the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.
Received: 20 April 2016      Published: 30 September 2016
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  14.80.Hv (Magnetic monopoles)  
  03.75.Dg (Atom and neutron interferometry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/090304       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/090304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai Ma
[1]Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[2]Caprez A, Barwick B and Batelaan H 2007 Phys. Rev. Lett. 99 210401
[3]Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319
[4]Cimmino A 1989 Phys. Rev. Lett. 63 380
[5]Allman B E 1992 Phys. Rev. Lett. 68 2409
[6]Sangster K, Hinds E A, Barnett S M and Riis E 1993 Phys. Rev. Lett. 71 3641
[7]He X G and McKellar B H J 1993 Phys. Rev. A 47 3424
[8]Wilkens M 1994 Phys. Rev. Lett. 72 5
[9]Wei H, Han R and Wei X 1995 Phys. Rev. Lett. 75 2071
[10]Dowling J, Williams C and Franson J 1999 Phys. Rev. Lett. 83 2486
[11]Wilkens M 1993 Phys. Rev. A 47 671
[12]Horsley S A R and Babiker M 2007 Phys. Rev. Lett. 99 090401
[13]Lepoutre S, Gauguet A, Tré nec G, Búchner M and Vigué J 2012 Phys. Rev. Lett. 109 120404
[14]Miffre A, Jacquey M, Bú chner M, Trénce G and Vigué J 2006 Eur. Phys. J. D 38 353
[15]Dulat S and Ma K 2012 Phys. Rev. Lett. 108 070405
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 090304
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 090304
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 090304
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 090304
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 090304
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 090304
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 090304
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 090304
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 090304
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 090304
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 090304
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 090304
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 090304
[14] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 090304
[15] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 090304
Viewed
Full text


Abstract