Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 090303    DOI: 10.1088/0256-307X/33/9/090303
GENERAL |
Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications
Yong-Gang Tan**, Qiang Liu
Physics and Information Engineering Department, Luoyang Normal College, Luoyang 471022
Cite this article:   
Yong-Gang Tan, Qiang Liu 2016 Chin. Phys. Lett. 33 090303
Download: PDF(333KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measurement-device-independent quantum key distribution (MDI-QKD) is proven to be immune to all the detector side channel attacks. With two symmetric quantum channels, the maximal transmission distance can be doubled when compared with the prepare-and-measure QKD. An interesting question is whether the transmission distance can be extended further. In this work, we consider the contributions of the two-way local operations and classical communications to the key generation rate and transmission distance of the MDI-QKD. Our numerical results show that the secure transmission distances are increased by about 12 km and 8 km when the 1 B and the 2 B steps are implemented, respectively.
Received: 18 May 2016      Published: 30 September 2016
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/090303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/090303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong-Gang Tan
Qiang Liu
[1]Bennett C H and Brassard G 1984 Proc. IEEE Internatio Conference Computers, Systems and Signal Proces Bangalore (India, December 9–12 1984) p 175
[2]Ekert A K 1991 Phys. Rev. Lett. 67 661
[3]Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4]Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[5]Hoi-Kwong L and Chau H F 1999 Science 283 2050
[6]Gottesman D, Hoi-Kwong L, Lü tkenhaus N and Preskill J 2004 Quantum Inf. Comput. 5 325
[7]Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[8]Lü tkenhaus N and Jahma M 2002 New J. Phys. 4 44.1-44.9
[9]Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[10]Hoi-Kwong L, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[11]Wang X B 2005 Phys. Rev. Lett. 94 230503
[12]Ma X, Qi B, Zhao Y and Hoi-Kwong L 2005 Phys. Rev. A 72 012326
[13]Makarov V and Hjelme D R 2005 J. Mod. Opt. 52 691
[14]Qi B, Fred H, Hoi-Kwong L and Ma X F 2007 Quantum Inf. Comput. 7 073
[15]Zhao Y, Fred H, Qi B, Chen C and Hoi-Kwong L 2008 Phys. Rev. A 78 042333
[16]Makarov V 2009 New J. Phys. 11 065003
[17]Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[18]Yuan Z L, Dynes J F and Shields A J 2010 Nat. Photon. 4 800
[19]Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 801
[20]Gerhardt I, Liu Q, Lamas-Linares A, Skaar J, Kurtsiefer C and Makarov V 2011 Nat. Commun. 2 349
[21]Fung C H F, Qi B, Tamaki K and Hoi-Kwong L 2007 Phys. Rev. A 75 032314
[22]Xu F, Qi B and Hoi-Kwong L 2010 New J. Phys. 12 113026
[23]Zhang J, Itzle M A, Zbinden H and Pan J W 2015 Light: Sci. Appl. 4 e286
[24]Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[25]Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651
[26]Inamori H 2002 Algorithmica 34 340
[27]Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28]Coffman V Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[29]Gottesman D and Hoi-Kwong L 2003 IEEE Trans. Inf. Theory 49 457
[30]Chau H F 2002 Phys. Rev. A 66 060302
[31]Gerd K, Vollbrecht H and Verstraete F 2005 Phys. Rev. A 71 062325
[32]Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[33]Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[34]Steane A M 1996 Proc. R. Soc. London A 452 2551
[35]Ma X, Fung C H F, Dupuis F, Chen K, Tamaki K and Hoi-Kwong L 2006 Phys. Rev. A 74 032330
[36]Ursin R et al 2007 Nat. Phys. 3 481
[37]Ma X, Fung C F and Razavi M 2012 Phys. Rev. A 86 052305
[38]Ma X and Razavi M 2012 Phys. Rev. A 86 062319
[39]Koashi M 2009 New J. Phys. 11 045018
[40]Xu F, Curty M, Qi B and Hoi-Kwong L 2013 New J. Phys. 15 113007
[41]Sun S H, Gao M, Li Y C and Liang L M 2013 Phys. Rev. A 87 052329
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 090303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090303
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 090303
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 090303
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 090303
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 090303
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 090303
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 090303
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 090303
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 090303
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 090303
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 090303
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 090303
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 090303
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 090303
Viewed
Full text


Abstract