Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 077402    DOI: 10.1088/0256-307X/33/7/077402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Common Electronic Features and Electronic Nematicity in Parent Compounds of Iron-Based Superconductors and FeSe/SrTiO$_3$ Films Revealed by Angle-Resolved Photoemission Spectroscopy
De-Fa Liu1, Lin Zhao1, Shao-Long He1, Yong Hu1, Bing Shen1, Jian-Wei Huang1, Ai-Ji Liang1, Yu Xu1, Xu Liu1, Jun-Feng He1, Dai-Xiang Mou1, Shan-Yu Liu1, Hai-Yun Liu1, Guo-Dong Liu1, Wen-Hao Zhang2, Fang-Sen Li2, Xu-Cun Ma2, Qi-Kun Xue2, Xian-Hui Chen3, Gen-Fu Chen1, Li Yu1, Jun Zhang1, Zu-Yan Xu4, Chuang-Tian Chen4, Xing-Jiang Zhou1,5**
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2State Key Lab of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
3Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
5Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
De-Fa Liu, Lin Zhao, Shao-Long He et al  2016 Chin. Phys. Lett. 33 077402
Download: PDF(1527KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe$_2$As$_2$, NaFeAs, FeSe and undoped FeSe/SrTiO$_3$ films with 1, 2 and 20 layers. While the electronic structure near the Brillouin zone center ${\it \Gamma}$ varies dramatically among different materials, the electronic structure near the Brillouin zone corners ($M$ points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the $d_{xz}$ and $d_{yz}$ bands below the nematic transition temperature. A clear relation is observed between the band splitting magnitude and the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
Received: 25 May 2016      Published: 01 August 2016
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/077402       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/077402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
De-Fa Liu
Lin Zhao
Shao-Long He
Yong Hu
Bing Shen
Jian-Wei Huang
Ai-Ji Liang
Yu Xu
Xu Liu
Jun-Feng He
Dai-Xiang Mou
Shan-Yu Liu
Hai-Yun Liu
Guo-Dong Liu
Wen-Hao Zhang
Fang-Sen Li
Xu-Cun Ma
Qi-Kun Xue
Xian-Hui Chen
Gen-Fu Chen
Li Yu
Jun Zhang
Zu-Yan Xu
Chuang-Tian Chen
Xing-Jiang Zhou
[1]Ishida K et al 2009 J. Phys. Soc. Jpn. 78 062001
[2]Paglione J et al 2010 Nat. Phys. 6 645
[3]Johnston D C 2010 Adv. Phys. 59 803
[4]Stewart G R 2011 Rev. Mod. Phys. 83 1589
[5]Wang F et al 2011 Science 332 200
[6]Hsu F C et al 2008 Proc. Natl. Acad. Sci. USA 105 14262
[7]McQueen T M et al 2009 Phys. Rev. Lett. 103 057002
[8]Mizuguchi Y et al 2010 Physica C 470 S338
[9]Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402
[10]Liu D F et al 2012 Nat. Commun. 3 931
[11]He S L et al 2013 Nat. Mater. 12 605
[12]Tian S Y et al 2013 Nat. Mater. 12 634
[13]Lee J J et al 2014 Nature 515 245
[14]Liu X et al 2014 Nat. Commun. 5 5047
[15]He J F et al 2014 Proc. Natl. Acad. Sci. USA 52 18501
[16]Miyata Y et al 2015 Nat. Mater. 14 775
[17]Liu X et al 2015 J. Phys.: Condens. Matter 27 183201
[18]Chu J H et al 2010 Science 329 824
[19]Tanatar M A et al 2010 Phys. Rev. B 81 184508
[20]Chuang T M et al 2010 Science 327 181
[21]Yi M et al 2011 Proc. Natl. Acad. Sci. USA 108 6878
[22]Kasahara S et al 2012 Nature 486 382
[23]Zhang Y et al 2012 Phys. Rev. B 85 085121
[24]Yi M et al 2012 New J. Phys. 14 073019
[25]Rosenthal E P et al 2014 Nat. Phys. 10 225
[26]Nakayama K et al 2014 Phys. Rev. Lett. 113 237001
[27]Fang C et al 2008 Phys. Rev. B 77 224509
[28]Xu C et al 2008 Phys. Rev. B 78 020501(R)
[29]Mazin I et al 2009 Nat. Phys. 5 141
[30]Fernandes R M et al 2010 Phys. Rev. Lett. 105 157003
[31]Fernandes R M et al 2014 Nat. Phys. 10 97
[32]Lee C C et al 2009 Phys. Rev. Lett. 103 267001
[33]Krüger F et al 2009 Phys. Rev. B 79 054504
[34]Chen C C et al 2010 Phys. Rev. B 82 100504(R)
[35]Kontani H et al 2011 Phys. Rev. B 84 024528
[36]Lv W et al 2011 Phys. Rev. B 84 174512
[37]Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[38]Liu H Y et al 2008 Phys. Rev. B 78 184514
[39]Liu G D et al 2009 Phys. Rev. B 80 134519
[40]Liu H Y et al 2010 Phys. Rev. Lett. 105 027001
[41]Wen C et al 2016 Nat. Commun. 7 10840
[42]Ye Z R et al 2015 arXiv:1512.02526
[43]Liu C et al 2010 Phys. Rev. B 82 075135
[44]Richard P et al 2010 Phys. Rev. Lett. 104 137001
[45]Tan S Y et al 2016 Phys. Rev. B 93 104513
[46]Singh D J et al 2008 Phys. Rev. Lett. 100 237003
[47]Zhang Y et al 2015 arXiv:1503.01556
[48]Wang Q S et al 2015 Nat. Mater. 15 159
[49]Chubukov A V et al 2015 Phys. Rev. B 91 201105
[50]F Wang et al 2015 Nat. Phys. 11 959
[51]Glasbrenner J K et al 2015 Nat. Phys. 11 953
[52]Yu R et al 2015 Phys. Rev. Lett. 115 116401
Related articles from Frontiers Journals
[1] Xiaolei Yi, Xiangzhuo Xing, Yan Meng, Nan Zhou, Chunlei Wang, Yue Sun, and Zhixiang Shi. Anomalous Second Magnetization Peak in 12442-Type RbCa$_2$Fe$_4$As$_4$F$_2$ Superconductors[J]. Chin. Phys. Lett., 2023, 40(2): 077402
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 077402
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 077402
[4] Yuhao Gu, Kun Jiang, Xianxin Wu, and Jiangping Hu. Cobalt-Dimer Nitrides: A Potential Novel Family of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2022, 39(9): 077402
[5] Shiwei Shen, Tian Qin, Jingjing Gao, Chenhaoping Wen, Jinghui Wang, Wei Wang, Jun Li, Xuan Luo, Wenjian Lu, Yuping Sun, and Shichao Yan. Coexistence of Quasi-two-dimensional Superconductivity and Tunable Kondo Lattice in a van der Waals Superconductor[J]. Chin. Phys. Lett., 2022, 39(7): 077402
[6] Shuo Li, Shuo Han, Shaohua Yan, Yi Cui, Le Wang, Shanmin Wang, Shanshan Chen, Hechang Lei, Feng Yuan, Jinshan Zhang, and Weiqiang Yu. Pressure-Induced Superconductivity in Flat-Band Kagome Compounds Pd$_3$P$_2$(S$_{1-x}$Se$_x$)$_8$[J]. Chin. Phys. Lett., 2022, 39(6): 077402
[7] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 077402
[8] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 077402
[9] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 077402
[10] Yi Cui, Cong Li, Qing Li, Xiyu Zhu, Ze Hu, Yi-feng Yang, Jinshan Zhang, Rong Yu, Hai-Hu Wen, and Weiqiang Yu. NMR Evidence of Antiferromagnetic Spin Fluctuations in Nd$_{0.85}$Sr$_{0.15}$NiO$_2$[J]. Chin. Phys. Lett., 2021, 38(6): 077402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 077402
[12] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 077402
[13] Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Tong Liu, Bo-Jin Pan, Shuai Zhang, Gen-Fu Chen, and Zhi-An Ren. A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K[J]. Chin. Phys. Lett., 2020, 37(9): 077402
[14] Qiong Wu, Huaxue Zhou, Yanling Wu, Lili Hu, Shunli Ni, Yichao Tian, Fei Sun, Fang Zhou, Xiaoli Dong, Zhongxian Zhao, and Jimin Zhao. Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li$_{0.84}$Fe$_{0.16}$)OHFe$_{0.98}$Se[J]. Chin. Phys. Lett., 2020, 37(9): 077402
[15] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 077402
Viewed
Full text


Abstract