Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 077102    DOI: 10.1088/0256-307X/33/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Adsorption Regularity and Characteristics of $sp^{3}$-Hybridized Gas Molecules on Anatase TiO$_{2}$ (101) Surface
Yong-Hong Gu1,2, Qing Feng2**, Jian-Jun Chen3, Yan-Hua Li1, Cong-Zhong Cai1**
1State Key Laboratory of Coal Mine Disaster Dynamics and Control, Department of Applied Physics, Chongqing University, Chongqing 400044
2Chongqing Key Laboratory on Optoelectronic Functional Materials, Chongqing Normal University, Chongqing 401331
3College of Communication Engineering, Chongqing University, Chongqing 400044
Cite this article:   
Yong-Hong Gu, Qing Feng, Jian-Jun Chen et al  2016 Chin. Phys. Lett. 33 077102
Download: PDF(1027KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the anatase titanium dioxide (101) surface adsorption of $sp^{3}$-hybridized gas molecules, including NH$_{3}$, H$_{2}$O and CH$_{4}$, using first-principles plane-wave ultrasoft pseudopotential based on the density functional theory. The results show that it is much easier for a surface with oxygen vacancies to adsorb gas molecules than it is for a surface without oxygen vacancies. The main factor affecting adsorption stability and energy is the polarizability of molecules, and adsorption is induced by surface oxygen vacancies of the negatively charged center. The analyses of state densities and charge population show that charge transfer occurs at the molecule surface upon adsorption and that the number of transferred charge reduces in the order of N, O and C. Moreover, the adsorption method is chemical adsorption, and adsorption stability decreases in the order of NH$_{3}$, H$_{2}$O and CH$_{4}$. Analyses of absorption and reflectance spectra reveal that after absorbed CH$_{4}$ and H$_{2}$O, compared with the surface with oxygen vacancy, the optical properties of materials surface, including its absorption coefficients and reflectivity index, have slight changes, however, absorption coefficient and reflectivity would greatly increase after NH$_{3}$ adsorption. These findings illustrate that anatase titanium dioxide (101) surface is extremely sensitive to NH$_{3}$.
Received: 15 January 2016      Published: 01 August 2016
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/077102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong-Hong Gu
Qing Feng
Jian-Jun Chen
Yan-Hua Li
Cong-Zhong Cai
[1]Laurent D et al 2013 Chem. Phys. Lett. 556 151
[2]Masato S et al 2013 Chem. Phys. Lett. 556 225
[3]Zhao W R et al 2014 Appl. Catal. B 144 468
[4]Zhang X X et al 2013 Appl. Surf. Sci. 286 47
[5]Fujishima A and Honda K 1972 Nature 238 37
[6]Gu Y H et al 2014 Chin. Opt. Lett. 12 091602
[7]Liu F L et al 2014 Appl. Surf. Sci. 315 81
[8]Selloni A et al 1998 Surf. Sci. 402 219
[9]Suhail M H et al 1992 Mater. Sci. Eng. B 12 247
[10]Vittadini A et al 1998 Phys. Rev. Lett. 81 2954
[11]Yu D D et al 2015 Phys. Lett. A 379 1666
[12]Ma L S et al 2013 Acta Phys. Sin. 62 187101 (in Chinese)
[13]Zhu H Q and Feng Q 2015 Chin. J. Lasers 42 0806004 (in Chinese)
[14]Feng Q et al 2014 Chin. Phys. B 23 043101
[15]Tosoni S et al 2016 Surf. Sci. 646 230
[16]Zhu X W et al 2015 Acta Phys. Sin. 64 147103 (in Chinese)
[17]Baktash A et al 2016 Mater. Sci. Semicond. Process. 45 45
[18]Luo Z F et al 2015 Acta Phys. Sin. 64 147102 (in Chinese)
[19]Raina W et al 2012 Comput. Mater. Sci. 58 24
[20]Zhang X X et al 2015 Appl. Surf. Sci. 353 662
[21]Lazzeri M et al 2001 Phys. Rev. B 63 155409
[22]Fahmi A and Minot C 1994 Surf. Sci. 304 343
[23]Zeng W et al 2015 Physica E 67 59
[24]Hebenstreit W et al 2000 Phys. Rev. B 62 R16334
[25]Ma X G et al 2006 Acta Phys. Sin. 55 4208 (in Chinese)
[26]Burdett J K et al 1987 J. Am. Chem. Soc. 109 3639
[27]Beltran A et al 2001 Surf. Sci. 490 116
[28]Ya D L and Yi G 2014 Phys. Rev. Lett. 112 206101
[29]Han Y et al 2006 J. Phys. Chem. B 110 7463
[30]Zhu L G 1978 Theoretical Basis of Molecular Orbital (Beijing: the People's Education Press) p 50 (in Chinese)
[31]Liu J Z et al 1983 Stereochemistry and Bonding in Inorganic Chemistry (Beijing: Higher Education Press) p 38 (in Chinese)
[32]Zhou G D and Duan L Y 2002 Basis of Structural Chemistry 2nd edn (Beijing: Peking University Press) p 42 (in Chinese)
[33]Shen X C 1992 Semiconductor Spectrum and Optical Quality (Beijing: Science Press) p 118 (in Chinese)
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 077102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 077102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 077102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 077102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 077102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077102
Viewed
Full text


Abstract