Chin. Phys. Lett.  2016, Vol. 33 Issue (07): 077201    DOI: 10.1088/0256-307X/33/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct
Min-Nan Guo1,2, Shao-Wei Liu1,2, Na Guo1,2, Li-Ying Yang1,2, Wen-Jing Qin1,2, Shou-Gen Yin1,2
1Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384
2Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384
Cite this article:   
Min-Nan Guo, Shao-Wei Liu, Na Guo et al  2016 Chin. Phys. Lett. 33 077201
Download: PDF(1071KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The performance and morphology stability of polymer bulk heterojunction solar cells based on poly(3-hexylthiophene) (P3HT) as the donor and indene-C$_{60}$ bisadduct (ICBA) or methanofullerene [6,6]-phenyl C$_{61}$-butyric acid methyl ester (PCBM) as the acceptor are compared. Effect of the different donor and acceptor weight ratios on photovoltaic performance of the P3HT:ICBA device is studied. The optimal device achieved power conversion efficiency of 5.51% with $J_{\rm sc}$ of 10.86 mA/cm$^{2}$, $V_{\rm oc}$ of 0.83 V, and fill factor (FF) of 61.1 % under AM 1.5 G (100 mW/cm$^{2})$ simulated solar illumination. However, the stability measurement shows that cells based on P3HT:ICBA are less stable than those of the device based on P3HT:PCBM. Atomic force microscope results reveal that the morphology of the P3HT:ICBA film changed considerably during the storage periods due to unstable interpenetrating D-A network. This observation can be explained by the fact that there is lack of intermolecular hydrogen bonds in the P3HT:ICBA system. However, in the P3HT:PCBM system the molecules in the blend film are firmly held together in the solid state by means of intermolecular hydrogen bonds originating from C-H$\cdots$Os bonds (where Os comes from the singly-bonded O atom of PCBM), forming a stable three-dimensional network. The measured PL decay lifetimes for P3HT:PCBM and P3HT:ICBA systems are 33.66 ns and 35.34 ns, respectively, indicating that the P3HT:ICBA system has a less efficient exciton separation efficiency than that of P3HT:PCBM, which may result in the interfacial photogenerated charges accumulated on the D: A interface. Such progressive phase segregation between P3HT and ICBA eventually leads to the degradation in performance and deteriorates the stability of the device. We also present an approach to enhance the stability of P3HT:ICBA systems by adding PCBM as the second acceptor. Our results show that by carefully tuning the contents of PCBM as the second acceptor, more stable polymer solar cells can be obtained.
Received: 15 November 2015      Published: 01 August 2016
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  88.40.jr (Organic photovoltaics)  
  72.40.+w (Photoconduction and photovoltaic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/7/077201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I07/077201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Min-Nan Guo
Shao-Wei Liu
Na Guo
Li-Ying Yang
Wen-Jing Qin
Shou-Gen Yin
[1]Robert F S 2011 Science 332 293
[2]Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y, Li G, Ray C and Yu L P 2010 Adv. Mater. 22 135
[3]Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[4]Ouyang X H, Peng R X, Ai L, Zhang X Y and Ge Z Y 2015 Nat. Photon. 9 520
[5]Krebs F C, Espinosa N, H?sel M, S?ndergaard R R and J?rgensen M 2014 Adv. Mater. 26 29
[6]Price S C, Stuart A C, Yang L, Zhou H and You W 2011 J. Am. Chem. Soc. 133 4625
[7]Yue W, Zhao J L, Wei M, Ye H, Huo L J, Guo X, Zhang M J, Ade H and Hou J H 2013 Adv. Mater. 25 3449
[8]Son H J, Lu L Y, Chen W, Xu T, Zheng T Y, Carsten B, Strzalka J, Darling S B, Chen L X and Yu L P 2013 Adv. Mater. 25 838
[9]Zhao G J, He Y J and Li Y F 2010 Adv. Mater. 22 4355
[10]He Y J, Chen H Y, Hou J H and Li Y F 2010 J. Am. Chem. Soc. 132 1377
[11]J?rgensen M, Norrman K and Krebs F C 2008 Sol. Energy Mater. Sol. Cells 92 686
[12]Reese M O, Gevorgyan S A, J?rgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner A, Haillant O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Rath T, Inganas O, Zhang F, Andersson M, Tvingstedt K, Lira-Cantu M, Laird D, McGuiness C, Gowrisanker S, Pannone M, Xiao M, Hauch J, Steim R, DeLongchamp D M, Rosch R, Hoppe H, Espinosa N, Urbina A, Yaman-Uzunoglu G, Bonekamp J B, van Breemen A J J M, Girotto C, Voroshazi E and Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253
[13]Jia Y H, Yang L Y, Qin W J, Yin S G, Zhang F L and Wei J 2013 Renewable Energy 50 565
[14]Ma W L, Gopinathan A and Heeger A J 2007 Adv. Mater. 19 3656
[15]Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J and Janssen R A J 2005 Nano Lett. 5 579
[16]Muller C, Ferenczi T A M, Campoy-Quiles M, Frost J M, Bradley D D C, Smith P, Stingelin-Stutzmann N and Nelson J 2008 Adv. Mater. 20 3510
[17]Huang J H, Hsiao Y S, Richard E, Chen C C, Chen P, Li G, Chu C W and Yang Y 2013 Appl. Phys. Lett. 103 043304
[18]Sheng C Q, Li W J, Du Y Y, Chen G H, Chen Z, Li H Y and Li H N 2015 AIP Adv. 5 097201
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 077201
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 077201
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 077201
[4] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 077201
[5] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 077201
[6] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 077201
[7] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 077201
[8] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 077201
[9] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 077201
[10] MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode[J]. Chin. Phys. Lett., 2015, 32(09): 077201
[11] ZHANG Hong-Mei, WANG Dan-Bei, ZENG Wen-Jin, YAN Min-Nan. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures[J]. Chin. Phys. Lett., 2015, 32(09): 077201
[12] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 077201
[13] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 077201
[14] ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen. Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer[J]. Chin. Phys. Lett., 2015, 32(07): 077201
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 077201
Viewed
Full text


Abstract