Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 067403    DOI: 10.1088/0256-307X/33/6/067403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Reproducible Approach of Preparing High-Quality Overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Single Crystals by Oxygen Annealing and Quenching Method
Yu-Xiao Zhang1, Lin Zhao1**, Gen-Da Gu2, Xing-Jiang Zhou1,3**
1National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Yu-Xiao Zhang, Lin Zhao, Gen-Da Gu et al  2016 Chin. Phys. Lett. 33 067403
Download: PDF(738KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report a reproducible approach in preparing high-quality overdoped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a $T_{\rm c}\sim$63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the $T_{\rm c}$ limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.
Received: 03 May 2016      Published: 30 June 2016
PACS:  74.72.-h (Cuprate superconductors)  
  74.72.Gh (Hole-doped)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/067403       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/067403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Xiao Zhang
Lin Zhao
Gen-Da Gu
Xing-Jiang Zhou
[1]Bednorz J G and Müller K A 1986 Z. Phys. B 64 189
[2]Orenstein J and Millis A J 2000 Science 288 468
[3]Bonn D A 2006 Nat. Phys. 2 159
[4]Zaanen J et al 2006 Nat. Phys. 2 138
[5]Keimer B et al 2015 Nature 518 179
[6]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[7]Wantanabe T, Fujii T and Matsuda A 1997 Phys. Rev. Lett. 79 2113
[8]Ghiringhelli G et al 2012 Science 337 821
[9]Achkar A J et al 2012 Phys. Rev. Lett. 109 167001
[10]Chang J et al 2012 Nat. Phys. 8 871
[11]Blackburn E et al 2013 Phys. Rev. Lett. 110 137004
[12]Neto S et al 2014 Science 343 393
[13]Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[14]Tallon J L and Loram J W 2001 Physica C 349 53
[15]Castellani C, Castro C D and Grilli 1995 Phys. Rev. Lett. 75 4650
[16]Eisaki H et al 2004 Phys. Rev. B 69 064512
[17]Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[18]Campuzano J C, Norman M R and Randeria M 2004 Phys. Superconductors (Berlin: Springer) vol 2 p 167
[19]Zhou X J et al 2007 Handbook of High-Temperature Superconductivity (New York: Springer) chap 3 p 87
[20]Fischer O et al 2007 Rev. Mod. Phys. 79 353
[21]Shen Z X et al 1993 Phys. Rev. Lett. 70 1553
[22]Ding H et al 1996 Phys. Rev. B 54 R9678
[23]Loeser A G et al 1996 Science 273 325
[24]Ding H et al 1996 Nature 382 51
[25]Bogdanov P V et al 2000 Phys. Rev. Lett. 85 2581
[26]Johnson P D et al 2001 Phys. Rev. Lett. 87 177007
[27]Kaminski A et al 2001 Phys. Rev. Lett. 86 1070
[28]Lanzara A et al 2001 Nature 412 510
[29]Zhang W T et al 2008 Phys. Rev. Lett. 100 107002
[30]Bok J M et al 2016 Sci. Adv. 2 e1501329
[31]Morris D E et al 1989 Phys. Rev. B 39 6612
[32]Feng D L et al 2001 Phys. Rev. Lett. 86 5550
[33]Bogdanov P V et al 2001 Phys. Rev. B 64 180505
[34]Kordyuk A A et al 2002 Phys. Rev. B 66 014502
[35]Chatterjee U et al 2011 Proc. Natl. Acad. Sci. USA 108 9346
[36]Vishik I M et al 2012 Proc. Natl. Acad. Sci. USA 109 18332
[37]Liang B and Lin C T 2002 J. Cryst. Growth 237 756
[38]Wen J S et al 2008 J. Cryst. Growth 310 1401
[39]Liu S Y et al 2012 Chin. Phys. Lett. 29 087401
[40]Wang N L et al 1996 Phys. Rev. B 54 7445
Related articles from Frontiers Journals
[1] Yu Zhang, Jiawei Mei, and Weiqiang Chen. Enhanced Intertwined Spin and Charge Orders in the $t$–$J$ Model in a Small $J$ Case[J]. Chin. Phys. Lett., 2023, 40(3): 067403
[2] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 067403
[3] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 067403
[4] Ziwen Chen, Yulong Li, Rui Zhu, Jun Xu, Tiequan Xu, Dali Yin, Xinwei Cai, Yue Wang, Jianming Lu, Yan Zhang, and Ping Ma. High-Temperature Superconducting YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ Josephson Junction Fabricated with a Focused Helium Ion Beam[J]. Chin. Phys. Lett., 2022, 39(7): 067403
[5] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 067403
[6] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 067403
[7] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 067403
[8] Zhao-Xia Zhang, Feng Xue, Xiao-Fan Gou. Interaction of Two Parallel Cracks in REBCO Bulk Superconductors under Applied Magnetic Field[J]. Chin. Phys. Lett., 2016, 33(07): 067403
[9] GOU Xiao-Fan, ZHU Guang. A Modified Lattice Model of the Reversible Effect of Axial Strain on the Critical Current of Polycrystalline REBa2Cu3O7−δ Films[J]. Chin. Phys. Lett., 2015, 32(03): 067403
[10] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 067403
[11] ZHANG Dan-Bo, HAN Qiang, WANG Zi-Dan. The Generalized Joint Density of States and Its Application to Exploring the Pairing Symmetry of High-Tc Superconductors[J]. Chin. Phys. Lett., 2013, 30(5): 067403
[12] XIA Feng-Jin, WU Hao, FU Yue-Ju, XU Bo, YUAN Jie, ZHU Bei-Yi, QIU Xiang-Gang, CAO Li-Xin, LI Jun-Jie, JIN Ai-Zi, WANG Yu-Mei, LI Fang-Hua, LIU Bao-Ting, XIE Zhong, ZHAO Bai-Ru. A New Bipolar Type Transistor Created Based on Interface Effects of Integrated All Perovskite Oxides[J]. Chin. Phys. Lett., 2012, 29(10): 067403
[13] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 067403
[14] Minoru SUZUKI, Kenji HAMADA, Ryota TAKEMURA, Masayuki OHMAKI, Itsuhiro KAKEYA. Overdoped High Current Density Bi2-xPbxSr2CaCu2O8+δ Intrinsic Josephson Junction Mesas and Their Switching Current Distributions[J]. Chin. Phys. Lett., 2010, 27(8): 067403
[15] CHEN Lei-Ming, LI Guang-Cheng, ZHANG Yan, GUO Yan-Feng. Film Thickness Dependence of Rectifying Properties of La1.85Sr0.15CuO4/Nb-SrTiO3 Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 067403
Viewed
Full text


Abstract