Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 067402    DOI: 10.1088/0256-307X/33/6/067402
Superconductivity in Undoped CaFe$_{2}$As$_{2}$ Single Crystals
Dong-Yun Chen1, Jia Yu1, Bin-Bin Ruan1, Qi Guo1, Lei Zhang2, Qing-Ge Mu1, Xiao-Chuan Wang1, Bo-Jin Pan1, Gen-Fu Chen1,3, Zhi-An Ren1,3**
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190
2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031
3Collaborative Innovation Center of Quantum Matter, Beijing 100190
Cite this article:   
Dong-Yun Chen, Jia Yu, Bin-Bin Ruan et al  2016 Chin. Phys. Lett. 33 067402
Download: PDF(1061KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Single crystals of undoped CaFe$_{2}$As$_{2}$ are grown by an FeAs self-flux method, and the crystals are quenched in ice-water rapidly after high-temperature growth. The quenched crystal undergoes a collapsed tetragonal structural phase transition around 80 K revealed by the temperature-dependent x-ray diffraction measurements. Superconductivity below 25 K is observed in the collapsed phase by resistivity and magnetization measurements. The isothermal magnetization curve measured at 2 K indicates that this is a typical type-II superconductor. For comparison, we systematically characterize the properties of the furnace-cooled, quenched, and post-annealed single crystals, and find strong internal crystallographic strain existing in the quenched samples, which is the key for the occurrence of superconductivity in the undoped CaFe$_{2}$As$_{2}$ single crystals.
Received: 02 May 2016      Published: 30 June 2016
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Dong-Yun Chen
Jia Yu
Bin-Bin Ruan
Qi Guo
Lei Zhang
Qing-Ge Mu
Xiao-Chuan Wang
Bo-Jin Pan
Gen-Fu Chen
Zhi-An Ren
[1]Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2]Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[3]de la Cruz C, Huang Q, Lynn J W, Li J, Ratcliff I I W, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L and Dai P 2008 Nature 453 899
[4]Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[5]Gao Z, Qi Y, Wang L, Wang D, Zhang X, Yao C, Wang C and Ma Y 2011 Europhys. Lett. 95 67002
[6]Kasinathan D, Ormeci A, Koch K, Burkhardt U, Schnelle W, Leithe-Jasper A and Rosner H 2009 New J. Phys. 11 025023
[7]Saha S R, Butch N P, Kirshenbaum K, Paglione J and Zavalij P Y 2009 Phys. Rev. Lett. 103 037005
[8]Kim J S, Blasius T D, Kim E G and Stewart G R 2009 J. Phys.: Condens. Matter 21 342201
[9]Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006
[10]Park T, Park E, Lee H, Klimczuk T, Bauer E D, Ronning F and Thompson J D 2008 J. Phys.: Condens. Matter 20 322204
[11]Kreyssig A, Green M A, Lee Y, Samolyuk G D, Zajdel P, Lynn J W, Bud'ko S L, Torikachvili M S, Ni N, Nandi S, Le?o J B, Poulton S J, Argyriou D N, Harmon B N, McQueeney R J, Canfield P C and Goldman A I 2008 Phys. Rev. B 78 184517
[12]Goldman A I, Kreyssig A, Proke? K, Pratt D K, Argyriou D N, Lynn J W, Nandi S, Kimber S A J, Chen Y, Lee Y B, Samolyuk G, Le?o J B, Poulton S J, Bud'ko S L, Ni N, Canfield P C, Harmon B N and McQueeney R J 2009 Phys. Rev. B 79 024513
[13]Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C and Luke G M 2009 Phys. Rev. B 79 020511(R)
[14]Canfield P C, Bud'ko S L, Ni N, Kreyssig A, Goldman A I, McQueeney R J, Torikachvili M S, Argyriou D N, Luke G and Yu W 2009 Physica C 469 404
[15]Lee H, Park E, Park T, Sidorov V A, Ronning F, Bauer E D and Thompson J D 2009 Phys. Rev. B 80 024519
[16]Lv B, Deng L, Gooch M, Wei F, Sun Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl. Acad. Sci. USA 108 15705
[17]Deng L Z, Lv B, Zhao K, Wei F Y, Xue Y Y, Wu Z and Chu C W 2016 Phys. Rev. B 93 054513
[18]Ni N, Nandi S, Kreyssig A, Goldman A I, Mun E D, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 014523
[19]Ronning F, Klimczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201
[20]Choi K Y, Wulferding D, Lemmens P, Ni N, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 212503
[21]Goldman A I, Argyriou D N, Ouladdiaf B, Chatterji T, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C and McQueeney R J 2008 Phys. Rev. B 78 100506(R)
[22]Pratt D K, Zhao Y, Kimber S A J, Hiess A, Argyriou D N, Broholm C, Kreyssig A, Nandi S, Bud'ko S L, Ni N, Canfield P C, McQueeney R J and Goldman A I 2009 Phys. Rev. B 79 060510(R)
[23]Yildirim T 2009 Phys. Rev. Lett. 102 037003
[24]Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein K D, Wu W, Julian S R, Kim Y J, Mazin I I and Boeri L 2015 Phys. Rev. Lett. 114 047001
[25]Bud'ko S L, Ma X, Tomi? M, Ran S, Valentí R and Canfield P C 2016 Phys. Rev. B 93 024516
[26]Ran S, Bud'ko S L, Pratt D K, Kreyssig A, Kim M G, Kramer M J, Ryan D H, Rowan-Weetaluktuk W N, Furukawa Y, Roy B, Goldman A I and Canfield P C 2011 Phys. Rev. B 83 144517
[27]Saparov B, Cantoni C, Pan M, Hogan T C, Ratcliff W, 2nd, Wilson S D, Fritsch K, Tachibana M, Gaulin B D and Sefat A S 2014 Sci. Rep. 4 4120
[28]Zhao K, Stingl C, Manna R S, Jin C Q and Gegenwart P 2015 Phys. Rev. B 92 235132
[29]Kasahara S, Shibauchi T, Hashimoto K, Nakai Y, Ikeda H, Terashima T and Matsuda Y 2011 Phys. Rev. B 83 060505(R)
[30]Danura M, Kudo K, Oshiro Y, Araki S, C Kobayashi T and Nohara M 2011 J. Phys. Soc. Jpn. 80 103701
[31]Saha S R, Butch N P, Drye T, Magill J, Ziemak S, Kirshenbaum K, Zavalij P Y, Lynn J W and Paglione J 2012 Phys. Rev. B 85 024525
[32]Wu G, Chen H, Wu T, Xie Y L, Yan Y J, Liu R H, Wang X F, Ying J J and Chen X H 2008 J. Phys.: Condens. Matter 20 422201
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 067402
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 067402
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 067402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 067402
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 067402
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 067402
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067402
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 067402
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 067402
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 067402
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 067402
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 067402
[13] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 067402
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 067402
[15] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 067402
Full text