Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 067203    DOI: 10.1088/0256-307X/33/6/067203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Gate-Voltage-Induced Magnetization Reversal and Tunneling Anisotropic Magnetoresistance in a Single Molecular Magnet with Temperature Gradient
Shu-Jing Li1, Yu-Ying Zhang1, Wei-Ping Xu1,2, Yi-Hang Nie1**
1Institute of Theoretical Physics, Shanxi University, Taiyuan 030006
2School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024
Cite this article:   
Shu-Jing Li, Yu-Ying Zhang, Wei-Ping Xu et al  2016 Chin. Phys. Lett. 33 067203
Download: PDF(619KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the control of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving of the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMR) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.
Received: 02 December 2015      Published: 30 June 2016
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  75.50.Xx (Molecular magnets)  
  75.60.Jk (Magnetization reversal mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/067203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/067203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu-Jing Li
Yu-Ying Zhang
Wei-Ping Xu
Yi-Hang Nie
[1]Sessoli R et al 1993 Nature 365 141
[2]Barra A L et al 1996 Europhys. Lett. 35 133
[3]Gatteschi D et al 1994 Science 265 1054
[4]Thomas L et al 1996 Nature 383 145
[5]Timm C and Elste F 2006 Phys. Rev. B 73 235304
[6]Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
[7]Niu P B et al 2015 Chin. Phys. Lett. 32 117201
[8]Zhang Z Z et al 2011 Chin. Phys. B 20 047504
[9]Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
[10]Chappert C et al 2007 Nat. Mater. 6 813
[11]Misiorny M and Barnasá J 2007 Phys. Rev. B 76 054448
[12]Lu H Z et al 2009 Phys. Rev. B 79 174419
[13]Zhang Z Z and Jiang L 2014 Nanotechnology 25 365201
[14]Slachter A et al 2010 Nat. Phys. 6 879
[15]Zhang Z Z et al 2010 Appl. Phys. Lett. 97 242101
[16]Wang R Q et al 2010 Phys. Rev. Lett. 105 057202
[17]Hatami M and Bauer G E W 2007 Phys. Rev. Lett. 99 066603
[18]Yu H et al 2010 Phys. Rev. Lett. 104 146601
[19]Zhang Z Z et al 2011 Appl. Phys. Lett. 99 133110
[20]Uchida K et al 2008 Nature 455 778
[21]Jaworski C M et al 2010 Nat. Mater. 9 898
[22]Karwacki K et al 2013 J. Phys.: Condens. Matter 25 505305
[23]Trocha P and Barna? J 2012 Phys. Rev. B 85 085408
[24]Wang Q et al 2012 Chin. Phys. B 21 117310
[25]Zhu L C et al 2010 Phys. Lett. A 374 4269
[26]?uti? I et al 2004 Rev. Mod. Phys. 76 323
[27]Moser J et al 2007 Phys. Rev. Lett. 99 056601
[28]Matos-Abiague A and Fabian J 2009 Phys. Rev. B 79 155303
[29]Xie H Q et al 2012 J. Appl. Phys. 112 043701
Related articles from Frontiers Journals
[1] Zhongmou Yue, Kunpeng Zhao, Hongyi Chen, Pengfei Qiu, Lidong Chen, and Xun Shi. Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions[J]. Chin. Phys. Lett., 2021, 38(11): 067203
[2] Ying Wu, Xiao-Xia Zhai, Cong-Mian Zhen, Xiao-Wei Liu, Li Ma, Deng-Lu Hou. A Method for Preparation of Ordered Porous Silicon Based on a 2D SiO$_{2}$ Template[J]. Chin. Phys. Lett., 2016, 33(05): 067203
[3] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 067203
[4] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 067203
[5] CHEN Liang**, ZHANG Wan-Rong, XIE Hong-Yun, JIN Dong-Yue, DING Chun-Bao, FU Qiang, WANG Ren-Qing, XIAO Ying, ZHAO Xin . Restabilizing Mechanisms after the Onset of Thermal Instability in Bipolar Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 067203
[6] REN Guo-Zhong, LIU Yang, MA Hong-An, SU Tai-Chao, LIN Le-Jing, DENG Le, JIANG Yi-Ping, ZHENG Shi-Zhao, JIA Xiao-Peng** . Thermoelectric Properties of Te-Doped Ba0.32Co4Sb12−xTexPrepared at HPHT[J]. Chin. Phys. Lett., 2011, 28(4): 067203
[7] JIANG Yi-Ping, JIA Xiao-Peng, GUO Wei, XU Hui-Wen, DENG Le, ZHENG Shi-Zhao, MA Hong-An. Elevation of the Power Factor of Co4Sb12 Skutterudite with Sm-Doping in High-Pressure High-Temperature Synthesis[J]. Chin. Phys. Lett., 2010, 27(6): 067203
[8] WANG Hong-Chao, WANG Chun-Lei, ZHANG Jia-Liang, ZHAO Ming-Lei, LIU Jian, SU Wen-Bin, YIN Na, MEI Liang-Mo. Cu Doping Effect on Electrical Resistivity and Seebeck Coefficient of Perovskite-Type LaFeO3 Ceramics[J]. Chin. Phys. Lett., 2009, 26(10): 067203
[9] QIAO Yan-Bin, ZHONG Guo-Hua, LI Di, WANG Jiang-Long, QIN Xiao-Ying, ZENG Zhi. Strongly Correlated Effect in TiS2[J]. Chin. Phys. Lett., 2007, 24(4): 067203
[10] WU Yi-Dong, WANG Zhi-Min, HE Yuan-Jin. A New Method for Calculating the Thermoelectric Efficiency[J]. Chin. Phys. Lett., 2004, 21(9): 067203
[11] LI Qiu-Hong, WANG Tai-Hong. Improved Electric Transport Properties of a Multi-wall Carbon Nanotube[J]. Chin. Phys. Lett., 2003, 20(8): 067203
[12] ZHOU Sheng-Ming, DONG Qiu-Zhao, ZHOU Gui-En, ZHANG Yu-Heng . Sign Change of Thermopower at Low Temperatures in Nd0.7 ( Ca,Sr,Ba)0.3 MnO3[J]. Chin. Phys. Lett., 2000, 17(1): 067203
Viewed
Full text


Abstract