CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers |
Jun Luo1, Sheng-Lei Zhao1, Zhi-Yu Lin1, Jin-Cheng Zhang1, Xiao-Hua Ma1,2, Yue Hao1** |
1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071 2School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071
|
|
Cite this article: |
Jun Luo, Sheng-Lei Zhao, Zhi-Yu Lin et al 2016 Chin. Phys. Lett. 33 067301 |
|
|
Abstract A novel AlGaN/GaN high electron mobility transistor (HEMT) with double buried p-type layers (DBPLs) in the GaN buffer layer and its mechanism are studied. The DBPL AlGaN/GaN HEMT is characterized by two equi-long p-type GaN layers which are buried in the GaN buffer layer under the source side. Under the condition of high-voltage blocking state, two reverse p-n junctions introduced by the buried p-type layers will effectively modulate the surface and bulk electric fields. Meanwhile, the buffer leakage is well suppressed in this structure and both lead to a high breakdown voltage. The simulations show that the breakdown voltage of the DBPL structure can reach above 2000 V from 467 V of the conventional structure with the same gate–drain length of 8 μm.
|
|
Received: 10 January 2016
Published: 30 June 2016
|
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
|
|
|
[1] | Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H and Hao Y 2016 IEEE Trans. Power Electron. 31 1517 | [2] | Luo J, Zhao S L, Mi M H, Chen W W, Hou B, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 027303 | [3] | Chu R M, Corrion A, Chen M, Li R, Wong D, Zehnder D, Hughes B and Boutros K 2011 IEEE Electron Device Lett. 32 632 | [4] | Zhao S L, Chen W W, Yue T, Wang Y, Luo J, Mao W, Ma X H and Hao Y 2013 Chin. Phys. B 22 117307 | [5] | Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Devices 48 1515 | [6] | Karmalkar S, Deng J Y, Shur M S and Gaska R 2001 IEEE Electron Device Lett. 22 373 | [7] | Tipirneni N, Koudymov A, Adivarahan V, Yang J, Simin G and Khan M A 2006 IEEE Electron Device Lett. 27 716 | [8] | Karmalkar S and Mishra U K 2001 Solid-State Electron. 45 1645 | [9] | Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Device Lett. 25 161 | [10] | Heikman S, Keller S, DenBaars S P and Mishra U K 2002 Appl. Phys. Lett. 81 439 | [11] | Poblenz C, Waltereit P, Rajan S, Heikman S, Mishra U K and Speck J S 2004 J. Vac. Sci. Technol. B 22 1145 | [12] | Bahat-Treidel E, Brunner F, Hilt O, Cho E, Würfl J and Tr?nkle G 2010 IEEE Trans. Electron Devices 57 3050 | [13] | Dora Y, Chakraborty A, Heikman S, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 529 | [14] | Verzellesi G, Morassi L, Meneghesso G, Meneghini M, Zanoni E, Pozzovivo G, Lavanga S, Detzel T, H?berlen O and Curatola G 2014 IEEE Electron Device Lett. 35 443 | [15] | Uren M J, Silvestri M, C?sar M, Hurkx G A M, Croon J A, ?onsky J and Kuball M 2014 IEEE Electron Device Lett. 35 327 | [16] | Cheng J B, Zhang B, Sun W F, Shi L X and Li Z J 2014 Superlattices Microstruct. 76 288 | [17] | Cheng J B, Zhang B and Li Z J 2008 Electron. Lett. 44 933 | [18] | Zhang B, Duan B X and Li Z J 2006 Chin. J. Semicond. 27 730 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|