Chin. Phys. Lett.  2016, Vol. 33 Issue (06): 063102    DOI: 10.1088/0256-307X/33/6/063102
ATOMIC AND MOLECULAR PHYSICS |
Theoretical Study on the Spectroscopic Parameters and Transition Properties of MgH Radical Including Spin–orbit Coupling
Dong-Lan Wu1,2, Bin Tan1, Xue-Feng Zeng1, Hui-Jun Wan1, An-Dong Xie1, Bing Yan2**, Da-Jun Ding2**
1College of Mathematic and Physical, Jinggangshan University, Ji'an 343009
2Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012
Cite this article:   
Dong-Lan Wu, Bin Tan, Xue-Feng Zeng et al  2016 Chin. Phys. Lett. 33 063102
Download: PDF(629KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An accurate theoretical study on the MgH radical is reported by adopting the high-level relativistic MRCI+Q method with a quintuple-zeta quality basis set. The reliable potential energy curves of the five ${\it \Lambda}$-S states of MgH are derived. Then the associated spectroscopic parameters are determined and found to be in good accordance with the available experimental results. The permanent dipole moments (PDMs) and the spin–orbit (SO) matrix elements of ${\it \Lambda}$-S states are computed. The results show that the abrupt changes of PDMs and SO matrix elements are attributed to the variations of electronic configurations at the avoided crossing point. The SOC effect leads to the five ${\it \Lambda}$-S states split into ten ${\it \Omega}$ states and results in the double potential well of (2)1/2 state. Finally, the transition properties from the (2)1/2, (1)3/2 and (3)1/2 states to the ground state $X^{2}{\it \Sigma}$+1/2 transitions are obtained, including the transition dipole moments, Franck–Condon factors and radiative lifetimes.
Received: 15 April 2016      Published: 30 June 2016
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/6/063102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I06/063102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong-Lan Wu
Bin Tan
Xue-Feng Zeng
Hui-Jun Wan
An-Dong Xie
Bing Yan
Da-Jun Ding
[1]Sotirovski P 1972 Astron. Astrophys. Suppl. Ser. 6 85
[2]Wallace L et al 1999 Astrophys. J. 524 454
[3]Kirkpatrick J D 2005 Annu. Rev. Astron. Astrophys. 43 195
[4]Boesgaard A M 1968 Astrophys. J. 154 185
[5]Gay P L and Lambert D L 2000 Astrophys. J. 533 260
[6]Watson W W and Rudnick P 1926 Astrophys. J. 63 20
[7]Grundstr?m B 1936 Nature 137 108
[8]Turner L A and Harris W T 1937 Phys. Rev. 52 626
[9]Pearse R W B 1929 Proc. R. Soc. A 122 442
[10]Ziurys L M et al 1993 Astrophys. J. 402 L21
[11]Shayesteh A et al 2004 J. Chem. Phys. 120 10002
[12]Bernath P F et al 1985 Astrophys. J. 298 375
[13]Shayesteh A et al 2007 J. Phys. Chem. A 111 12495
[14]Shayesteh A et al 2003 J. Chem. Phys. 118 1158
[15]Leopold K R et al 1986 J. Chem. Phys. 84 1935
[16]Lemoine B et al 1988 J. Chem. Phys. 89 673
[17]Shayesteh A et al 2011 J. Chem. Phys. 135 094308
[18]Saxon R P et al 1978 J. Chem. Phys. 69 5301
[19]Weck P F et al 2003 Astrophys. J. 582 1059
[20]Weck P F et al 2003 Astrophys. J. 584 459
[21]Skory S et al 2003 Astrophys. J. Suppl. Ser. 148 599
[22]Mestdagh J M 2009 Chem. Phys. Lett. 471 22
[23]Guitou M et al 2010 Chem. Phys. Lett. 488 145
[24]Mostafanejad M and Shayesteh A 2012 Chem. Phys. Lett. 551 13
[25]Werner H J et al 2012 MOLPRO: a package of ab initio programs
[26]Le Roy R J 2007 LEVEL 8. 0: A Computer Program for Solving the Radial Schr?dinger Equation for Bound and Quasibound Levels (University of Waterloo: Chemical Physics Research Report CP-663)
[27]Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
[28]Woon D E and Dunning T H J 1993 J. Chem. Phys. 98 1358
[29]Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[30]Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[31]Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[32]Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[33]Berning A et al 2000 Mol. Phys. 98 1823
[34]Huber K P and Hertzberg G 1979 Molecular Spectrum and Molecular Structure IV, Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
[35]Wu D L et al 2015 Chin. Phys. B 24 043401
[36]Wu D L et al 2015 Spectrochim. Acta Part A 150 499
[37]Liang G Y et al 2016 Spectrochim. Acta Part A 156 9
[38]Zhang X M et al 2014 Chem. Phys. 443 142
[39]Liu Y F et al 2012 Comput. Theor. Chem. 991 82
[40]Li Q N et al 2015 Chin. Phys. Lett. 32 073103
[41]Moore C E 1971 Atomic Energy Levels (Washington: National Bureau of Standards)
[42]Zhang Y P et al 2004 Phys. Rev. Lett. 92 203003
[43]Zhang Y P et al 2005 Chin. Phys. Lett. 22 1114
[44]Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)
[45]Wu D L et al 2016 Spectrochim. Acta Part A 161 101
[46]Nedelec O and Dufayard J 1978 J. Chem. Phys. 69 1833
Related articles from Frontiers Journals
[1] Shu-Tao Zhao, Jun Li, Rui Li, Shuang Yin, and Hui-Jie Guo. Configuration Interaction of Electronic Structure and Spectroscopy of AlH and Its Cation[J]. Chin. Phys. Lett., 2021, 38(4): 063102
[2] Gui-Ying Liang, Yi-Geng Peng, Rui Li, Yong Wu, and Jian-Guo Wang. Molecular Opacity Calculations for Lithium Hydride at Low Temperature[J]. Chin. Phys. Lett., 2020, 37(12): 063102
[3] Qing-Chi Meng, Song-Qiu Yang, Guang-Hua Ren, Tian-Shu Chu. Mechanism of Excited State Double Proton Transfer in 2-Amino-3-Methoxypyridine and Acetic Acid Complex[J]. Chin. Phys. Lett., 2018, 35(9): 063102
[4] LI Qi-Nan, ZHAO Shu-Tao, ZHANG Xiao-Mei, LUO Wang, LI Rui, YAN Bing. A Precise Description of the Electronic Structures and Spin-Allowed Transition Properties of PF and Its Cation: All-Electron Configuration-Interaction Investigations Including Relativistic Effect[J]. Chin. Phys. Lett., 2015, 32(07): 063102
[5] LI Rui, YAN Bing, ZHAO Shu-Tao, GUO Qing-Qun, LIAN Ke-Yan, TIAN Chuan-Jin, PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation[J]. Chin. Phys. Lett., 2008, 25(5): 063102
[6] WU Yong, YAN Bing, LIU Ling, WANG Jian-Guo,. Ab Initio Calculations of Differential Cross Sections for Single Charge Transfer in 3He2++4 He Collisions[J]. Chin. Phys. Lett., 2007, 24(7): 063102
Viewed
Full text


Abstract