CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Influence of Post-Annealing on Electrical Characteristics of Thin-Film Transistors with Atomic-Layer-Deposited ZnO-Channel/Al$_{2}$O$_{3}$-Dielectric |
You-Hang Wang, Qian Ma, Li-Li Zheng, Wen-Jun Liu, Shi-Jin Ding**, Hong-Liang Lu, Wei Zhang |
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433
|
|
Cite this article: |
You-Hang Wang, Qian Ma, Li-Li Zheng et al 2016 Chin. Phys. Lett. 33 058501 |
|
|
Abstract High-performance thin-film transistors (TFTs) with a low thermal budget are highly desired for flexible electronic applications. In this work, the TFTs with atomic layer deposited ZnO-channel/Al$_{2}$O$_{3}$-dielectric are fabricated under the maximum process temperature of 200$^{\circ}\!$C. First, we investigate the effect of post-annealing environment such as N$_{2}$, H$_{2}$-N$_{2}$ (4%) and O$_{2}$ on the device performance, revealing that O$_{2}$ annealing can greatly enhance the device performance. Further, we compare the influences of annealing temperature and time on the device performance. It is found that long annealing at 200$^{\circ}\!$C is equivalent to and even outperforms short annealing at 300$^{\circ}\!$C. Excellent electrical characteristics of the TFTs are demonstrated after O$_{2}$ annealing at 200$^{\circ}\!$C for 35 min, including a low off-current of $2.3\times10^{-13}$ A, a small sub-threshold swing of 245 mV/dec, a large on/off current ratio of 7.6$\times$10$^{8}$, and a high electron effective mobility of 22.1 cm$^{2}$/V$\cdot$s. Under negative gate bias stress at $-$10 V, the above devices show better electrical stabilities than those post-annealed at 300$^{\circ}\!$C. Thus the fabricated high-performance ZnO TFT with a low thermal budget is very promising for flexible electronic applications.
|
|
Received: 17 November 2015
Published: 31 May 2016
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] | Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99 | [2] | Chen Y N, Xu Z, Zhao S L et al 2013 Chin. Phys. Lett. 30 037302 | [3] | Geng Y, Yang W, Lu H L et al 2014 IEEE Electron Device Lett. 35 1266 | [4] | Levy D H, Freeman D, Nelson S F et al 2008 Appl. Phys. Lett. 92 192101 | [5] | Oh B Y, Kim Y H, Lee H J et al 2011 Semicond. Sci. Technol. 26 85007 | [6] | Ahn C H, Yun M G, Lee S Y et al 2014 IEEE Trans. Electron Devices 61 73 | [7] | Lim S J, Kwon S J, Kim Het al 2007 Appl. Phys. Lett. 91 183517 | [8] | Kwon S, Bang S, Lee S et al 2009 Semicond. Sci. Technol. 24 035015 | [9] | Bang S, Lee S, Park J et al 2009 J. Phys. D: Appl. Phys. 42 235102 | [10] | Yang J, Park J K, Kim S et al 2012 Phys. Status Solidi A 209 2087 | [11] | Zhang J, Liu Y, Wei Z Y et al 2013 Appl. Surf. Sci. 265 363 | [12] | Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501 | [13] | Chen S, Cui X M, Ding S J et al 2013 IEEE Electron Device Lett. 34 1008 | [14] | Huang X M, Wu C F, Lu h et al 2015 Chin. Phys. Lett. 32 077303 | [15] | Lee K H, Jung J S, Son K S et al 2009 Appl. Phys. Lett. 95 232106 | [16] | Kim Y, Kim S, Kim W et al 2012 IEEE Trans. Electron Devices 59 2699 | [17] | Pan T M, Chen C H, Her J L et al 2014 J. Appl. Phys. 116 194510 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|