Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 058102    DOI: 10.1088/0256-307X/33/5/058102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Thermal Analysis Simulation of Germanium Zone Refining Process Assuming a Constant Radio-Frequency Heating Source
Mahdi Ezheiyan1, Hossein Sadeghi1**, Mohammad-Hossein Tavakoli2
1Department of Physics, Malek-Ashtar University of Technology, Shahin-Shahr, Iran
2Department of Physics, Bu-Ali Sina University, Hamadan, Iran
Cite this article:   
Mahdi Ezheiyan, Hossein Sadeghi, Mohammad-Hossein Tavakoli 2016 Chin. Phys. Lett. 33 058102
Download: PDF(792KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Three-dimensional thermal analysis simulation of a horizontal zone refining system is conducted for germanium semiconductor materials. The considered geometry includes a graphite boat filled with germanium placed in a cylindrical quartz tube. A flow of Ar and H$_{2}$ gas mixture is purged through the tube. A narrow section of the boat is assumed to be exposed to a constant heat rate produced by an rf coil located outside the quartz tube. The results of this analysis provide essential information about various parameters such as the shape of the molten zone, required power and temperature gradient in the system.
Received: 27 December 2015      Published: 31 May 2016
PACS:  81.05.Dz (II-VI semiconductors)  
  44.10.+i (Heat conduction)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  07.05.Tp (Computer modeling and simulation)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/058102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/058102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mahdi Ezheiyan
Hossein Sadeghi
Mohammad-Hossein Tavakoli
[1]Pfann W G 1966 Zone Melting (New York: John Wiley Sons)
[2]Hubbard G et al 1978 IEEE Trans. Nucl. Sci. 25 362
[3]Ho C D et al 2003 Int. J. Model. Simul. 23 85
[4]Ho C D et al 1999 Sep. Purif. Technol. 15 69
[5]Ho C D et al 1998 Can. J. Chem. Eng. 76 113
[6]Spim J, Bernadou M and Garcia A 2000 J. Alloys Compd. 298 299
[7]Rodway G and Hunt J 1989 J. Cryst. Growth 97 680
[8]Wang J H 1997 J. Cryst. Growth 173 201
[9]Lan C, Chian J and Wang T 2000 J. Cryst. Growth 218 115
[10]Lan C and Liang M 1998 J. Cryst. Growth 186 203
[11]Lan C and Liang M 2000 J. Cryst. Growth 208 327
[12]Lan C, Liang M and Chian C 2000 J. Cryst. Growth 213 395
[13]Liu Y, Moss R and Dost S 2006 J. Cryst. Growth 293 146
[14]Roussopoulos G and Rubini P A 2004 J. Cryst. Growth 271 333
[15]Fluent 6.1 User's Guide 2003 Fluent Inc Lebanon NH
[16]Voller V R and Prakash C 1987 Int. J. Heat Mass Transfer 30 1709
[17]Wang S, Fang H, Jin Z, Zhao C and Zheng L 2014 J. Cryst. Growth 408 42
[18]Hull E 2011 Crystal SBIR Meeting (24 October 2011)
[19]Sizaret S, Fedioun I, Barbanson L and Chen Y 2006 Geophys. J. Int. 167 1027
Related articles from Frontiers Journals
[1] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 058102
[2] Yu-Ping Jin, Bin Zhang, Jian-Zhong Wang, Li-Qun Shi. P-Type Nitrogen-Doped ZnO Films Prepared by In-Situ Thermal Oxidation of Zn$_{3}$N$_{2}$ Films[J]. Chin. Phys. Lett., 2016, 33(05): 058102
[3] M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E. K. Girija, D. Pathinettam Padiyan. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature[J]. Chin. Phys. Lett., 2015, 32(07): 058102
[4] ZHANG Bin, LI Min, WANG Jian-Zhong, SHI Li-Qun. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2[J]. Chin. Phys. Lett., 2013, 30(2): 058102
[5] YANG Xiu-Ying, CHENG Jun-Ye, LI Bin, CAO Wen-Qiang, YUAN Jie, ZHANG De-Qing, CAO Mao-Sheng. Micro-Nanometer Parasitic Crystal Growth and Photoluminescence Property of Unique Screw-Cone Like Zn2GeO4-ZnO by Combustion Oxidization[J]. Chin. Phys. Lett., 2012, 29(10): 058102
[6] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 058102
[7] DING Bin-Feng. Characterization of a ZnO Epilayer Grown on Sapphire by using Rutherford Backscattering/Channeling and X-Ray Diffraction[J]. Chin. Phys. Lett., 2012, 29(3): 058102
[8] HUANG Hai-Qin, SUN Jian, LIU Feng-Juan, ZHAO Jian-Wei, HU Zuo-Fu, LI Zhen-Jun, ZHANG Xi-Qing**, WANG Yong-Sheng . Characteristics and Time-Dependent Instability of Ga-Doped ZnO Thin Film Transistor Fabricated by Radio Frequency Magnetron Sputtering[J]. Chin. Phys. Lett., 2011, 28(12): 058102
[9] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 058102
[10] REN Guo-Zhong, LIU Yang, MA Hong-An, SU Tai-Chao, LIN Le-Jing, DENG Le, JIANG Yi-Ping, ZHENG Shi-Zhao, JIA Xiao-Peng** . Thermoelectric Properties of Te-Doped Ba0.32Co4Sb12−xTexPrepared at HPHT[J]. Chin. Phys. Lett., 2011, 28(4): 058102
[11] WANG Cong, ZHANG Fang, KIM Nam-Young. Development and Characterization of Metal-Insulator-Metal Capacitors with SiNx Thin Films by Plasma-Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(7): 058102
[12] ZHOU Xiao-Fang, ZHANG Hui, LI Yong, TANG Xiao-Dong, CHEN Qing-Ming, ZHANG Peng-Xiang. Giant Temperature Coefficient of Resistance in ZnO/Si (111) Thin Films[J]. Chin. Phys. Lett., 2010, 27(1): 058102
[13] WANG Kun, DING Zhi-Bo, LI Lin, YAO Shu-De. Depth Dependence of Tetragonal Distortion of a ZnO/Mg0.1Zn0.9O/ZnO Heterostructure Studied by Rutherford Backscattering/Channeling[J]. Chin. Phys. Lett., 2009, 26(10): 058102
[14] GAO Mei-Zhen, ZHANG Feng, LIU Jing, SUN Hui-Na. Effect of Annealing Conditions on Properties of Sol-Gel Derived Al-Doped ZnO Thin Films[J]. Chin. Phys. Lett., 2009, 26(8): 058102
[15] ZHANG Yang, DIAO Da-Sheng. Enhanced Field Emission from Vertical ZnO Nanoneedles on Micropyramids[J]. Chin. Phys. Lett., 2009, 26(3): 058102
Viewed
Full text


Abstract