CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Anisotropic Ballistic Transport through a Potential Barrier on Monolayer Phosphorene |
Fang Cheng**, Bing He |
Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
|
|
Cite this article: |
Fang Cheng, Bing He 2016 Chin. Phys. Lett. 33 057301 |
|
|
Abstract We demonstrate theoretically the anisotropic quantum transport of electrons through a single barrier on monolayer phosphorene. Using an effective ${\boldsymbol k}\cdot{\boldsymbol p}$ Hamiltonian, we find that the transmission probability for transport through n–n–n (or n–p-n) junction is an oscillating function of the incident angle, the barrier height, as well as the incident energy of electrons. The conductance in such systems depends sensitively on the transport direction due to the anisotropic effective mass. By tuning the Fermi energy and gate voltage, the channels can be transited from opaque to transparent, which provides us with an efficient way to control the transport of monolayer phosphorene-based microstructures.
|
|
Received: 22 February 2016
Published: 31 May 2016
|
|
PACS: |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
|
|
|
[1] | Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801 | [2] | Churchill H O and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 330 | [3] | Reich E S 2014 Nature 506 19 | [4] | Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J and van der Zant H S J 2014 {Two-Dimensional Mater.} 1 025001 | [5] | Han C Q, Yao M Y, Bai X X, Miao L, Zhu F, Guan D D, Wang S, Gao C L, Liu C, Qian D, Liu Y and Jia J 2014 Phys. Rev. B 90 085101 | [6] | Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C and Zhang Z 2014 Nano Res. 7 853 | [7] | Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347 | [8] | Low T, Rodin A S, Carvalho A, Jiang Y, Wang Han, Xia F and Castro Neto A H 2014 Phys. Rev. B 90 075434 | [9] | Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 201408 | [10] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 | [11] | Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033 | [12] | Barbier M, Peeters F M, Vasilopoulos P, Pereira J M and Jr 2008 Phys. Rev. B 77 115446 | | Barbier M, Vasilopoulos P and Peeters F M 2010 Philos. Trans. R. Soc. A 368 5499 | | Duppen B V and Peeters F M 2013 Europhys. Lett. 102 27001 | [13] | Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319 | [14] | Zhou X Y, Zhang R, Sun J P, Zou Y L, Zhang D, Lou W K, Cheng F, Zhou G H, Zhai F and Chang K 2015 Sci. Rep. 5 12295 | [15] | Voon L C L Y, Lopez-Bezanilla A, Wang J, Zhang Y and Willatzen M 2015 New J. Phys. 17 025004 | [16] | Wu Z H, Zhai F, Peeters F M, Xu H Q and Chang K 2011 Phys. Rev. Lett. 106 176802 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|