Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 057203    DOI: 10.1088/0256-307X/33/5/057203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influence of Annealing Temperature on Berthelot-Type Hopping Conduction Mechanism in Carbon-Nickel Composite Films
V. Dalouji1**, S. M. Elahi2, A. Ghaderi3, S. Solaymani3
1Department of Physics, Malayer University, Malayer, Iran
2Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
3Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Cite this article:   
V. Dalouji, S. M. Elahi, A. Ghaderi et al  2016 Chin. Phys. Lett. 33 057203
Download: PDF(1119KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electrical conductivity of carbon-nickel composite films annealed at temperatures 300, 500 and 800$^{\circ}\!$C is studied over a temperature range of 50–300 K. While the conductivity data above room temperature show extended state conduction, lowering the temperature from 150 to 50 K leads to the Berthelot-type conduction mechanism. It can be seen that the films annealed at 500$^{\circ}\!$C have the maximum conductivity. The extent of the carrier wave function at 500$^{\circ}\!$C has the minima $2.87\times10^{-7}$ cm and $2.45\times10^{-7}$ cm in octahedral-metal stretching vibrations and intrinsic stretching vibrations of the metal at the tetrahedral site, respectively. The average distances between two vibration octahedral and tetrahedral sites at 500$^{\circ}\!$C also have the minima $1.13\times10^{-7}$ cm and $0.97\times10^{-7}$ cm, respectively. The Berthelot temperature for films annealed at 800$^{\circ}\!$C has the minimum of 94.3 K.
Received: 15 December 2015      Published: 31 May 2016
PACS:  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
  66.70.Df (Metals, alloys, and semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/057203       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/057203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
V. Dalouji
S. M. Elahi
A. Ghaderi
S. Solaymani
[1]??lu, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F and Solaymani S 2015 Ind. Eng. Chem. Res. 54 8212
[2]Stach S, Garczyk, ??lu ?, Solaymani S, Ghaderi A, Moradian R, Nezafat N B, Elahi S M and Gholamali H 2015 J. Phys. Chem. C 119 17887
[3]Naderi S, Ghaderi A, Solaymani S and Golzan M M 2012 Eur. Phys. J. Appl. Phys. 58 20401
[4]??luuS, Stach S, Solaymani S, Moradian R, Ghaderi A, Hantehzadeh M R, Elahi S M, Garczy k and Izadyar S 2015 J. Electroanal. Chem. 74 931
[5]Endrino J L, Galindo R E, Zhang H S, Allen M, Gago R, Espinosa A and Anders A 2008 Surf. Coat. Technol. 202 3675
[6]Ghodselahi T, Vesaghi M A and Shafiekhani A 2009 J. Phys. D: Appl. Phys. 42 015308
[7]Ghodselahi T, Vesaghi M A, Shafiekhani A, Ahmadi M, Panahandeh M and HeidariSaani M 2010 Physica B 405 3949
[8]Garcia-Zarco O, Rodil S E and Camacho-Lopez M A 2009 Thin Solid Films 518 1493
[9]Dalouji V, ElahiS M and SaadiAlecasir M 2015 Phys. Scr. 90 115802
[10]Elahi S M, Dalouji V, Mehrparvar D and Valedbagi S 2013 Mol. Cryst. Liq. Cryst. 587 105
[11]Dalouji V and Elahi S M 2014 J. Korean Phys. Soc. 64 857
[12]Dalouji V and Elahi S M 2015 J. Fusion Energy 34 646
[13]Islam M N, Ram S K and Kumar S 2009 Physica E 41 1025
[14]Serin T, Yildiz A, andSerinN S H 2011 Physica B 406 3551
[15]Hill R M 1976 Phys. Status Solidi A 35 29
[16]Zabrodski A G and Zinoveva K N 1984 Sov. Phys. JETP 59 425
[17]Tan M, K?seoglu Y, Alan F and Sentürk E 2011 J. Alloys Compd. 509 9399
[18]Ajmal M and Maqsood A 2008 Mater. Lett. 62 2077
[19]Hurd C M 1985 J. Phys. C 186 487
[20]Mehra R M, Agarwal V, Singh V A and Mathur P C 1998 J. Appl. Phys. 83 2235
[21]Singh J and Shimakawa K 2003 Advances in Amorphous Semiconductors (Washington: Taylor & Francis)
Related articles from Frontiers Journals
[1] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 057203
[2] Yu Bai, Zhe Wang, Na Lei, Wisal Muhammad, Lifeng Xiang, Qiang Li, Huilin Lai, Yinyan Zhu, Wenbing Wang, Hangwen Guo, Lifeng Yin, Ruqian Wu, and Jian Shen. Enhanced Anomalous Hall Effect of Pt on an Antiferromagnetic Insulator with Fully Compensated Surface[J]. Chin. Phys. Lett., 2022, 39(10): 057203
[3] Zheng Chen, Min Wu, Yequn Liu, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, and Mingliang Tian. Non-Monotonic Evolution of Carrier Density and Mobility under Thermal Cycling Treatments in Dirac Semimetal Cd$_{3}$As$_{2}$ Microbelts[J]. Chin. Phys. Lett., 2021, 38(4): 057203
[4] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 057203
[5] Ning Liu, Xiaolong Chen, Jiangang Guo, Jun Deng, Liwei Guo. New Type of Nitrides with High Electrical and Thermal Conductivities[J]. Chin. Phys. Lett., 2018, 35(8): 057203
[6] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 057203
[7] LU Peng-Xian, QU Ling-Bo. Electronic Structure, Lattice Dynamics and Thermoelectric Properties of PbTe from First-Principles Calculation[J]. Chin. Phys. Lett., 2013, 30(1): 057203
[8] LIU Hui-Ping, SUN Yun-Zhou, YI Lin. Heat Conductivity in a Two-Dimensional Finite-Size Spin System with Dzyaloshinskii--Moriya Interactions[J]. Chin. Phys. Lett., 2006, 23(7): 057203
Viewed
Full text


Abstract