CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials |
Yi-Heng Yin, Yan-Xiong Niu**, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang |
School of Instrument Science and Optoelectronic Engineering, Beihang University, Beijing 100191
|
|
Cite this article: |
Yi-Heng Yin, Yan-Xiong Niu, Ming Ding et al 2016 Chin. Phys. Lett. 33 057202 |
|
|
Abstract We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlattices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged wave number. The magnetic and electric potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.
|
|
Received: 23 December 2015
Published: 31 May 2016
|
|
PACS: |
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
|
|
|
[1] | Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 | [2] | Xu Z P, Zheng Q S and Chen G H 2007 Appl. Phys. Lett. 90 223115 | [3] | Ryzhii V, Ostuji T, Ryzhii M and Shur M S 2012 J. Phys. D: Appl. Phys. 45 302001 | [4] | Koester S J and Li M 2012 Appl. Phys. Lett. 100 171107 | [5] | Ando T 2005 J. Phys. Soc. Jpn. 74 777 | [6] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | [7] | Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620 | [8] | Purewal M S, Zhang Y and Kim P 2006 Phys. Status Solidi B 243 3418 | [9] | Guo X X, Liu D and Li Y X 2011 Appl. Phys. Lett. 98 242101 | [10] | Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444 | [11] | Ma T X, Liang C, Wang L G and Lin H Q 2012 Appl. Phys. Lett. 100 252402 | [12] | Zhao P L and Chen X 2011 Appl. Phys. Lett. 99 182108 | [13] | Lu W T, Wang S J, Wang Y L, Jiang H and Li W 2013 Phys. Lett. A 377 1368 | [14] | Wu Q S, Zhang S N and Yang S J 2008 J. Phys.: Condens. Matter 20 485210 | [15] | Sun L F, Fang C, Song Y and Guo Y 2010 J. Phys.: Condens. Matter 22 445303 | [16] | Li Y X 2010 J. Phys.: Condens. Matter 22 015302 | [17] | Bliokh Y P, Freilikher V, Savel'ev S and Nori F 2009 Phys. Rev. B 79 075123 | [18] | Cheng Z M, Savit R and Merlin R 1988 Phys. Rev. B 37 4375 | [19] | Axel F and Peyriere J 1989 J. Stat. Phys. 57 1013 | [20] | Ramezani Masir M, Vasilopoulos and Peeters F M 2009 New J. Phys. 11 095009 | [21] | Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|