Chin. Phys. Lett.  2016, Vol. 33 Issue (05): 057202    DOI: 10.1088/0256-307X/33/5/057202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transport and Conductance in Fibonacci Graphene Superlattices with Electric and Magnetic Potentials
Yi-Heng Yin, Yan-Xiong Niu**, Ming Ding, Hai-Yue Liu, Zhen-Jiang Liang
School of Instrument Science and Optoelectronic Engineering, Beihang University, Beijing 100191
Cite this article:   
Yi-Heng Yin, Yan-Xiong Niu, Ming Ding et al  2016 Chin. Phys. Lett. 33 057202
Download: PDF(741KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlattices with electrostatic barriers and magnetic vector potentials. It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged wave number. The magnetic and electric potentials modify the energy band structure and transmission spectrum in entirely diverse ways. In addition, the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states. The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.
Received: 23 December 2015      Published: 31 May 2016
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.23.-b (Electronic transport in mesoscopic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/5/057202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I05/057202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi-Heng Yin
Yan-Xiong Niu
Ming Ding
Hai-Yue Liu
Zhen-Jiang Liang
[1]Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[2]Xu Z P, Zheng Q S and Chen G H 2007 Appl. Phys. Lett. 90 223115
[3]Ryzhii V, Ostuji T, Ryzhii M and Shur M S 2012 J. Phys. D: Appl. Phys. 45 302001
[4]Koester S J and Li M 2012 Appl. Phys. Lett. 100 171107
[5]Ando T 2005 J. Phys. Soc. Jpn. 74 777
[6]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[7]Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[8]Purewal M S, Zhang Y and Kim P 2006 Phys. Status Solidi B 243 3418
[9]Guo X X, Liu D and Li Y X 2011 Appl. Phys. Lett. 98 242101
[10]Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444
[11]Ma T X, Liang C, Wang L G and Lin H Q 2012 Appl. Phys. Lett. 100 252402
[12]Zhao P L and Chen X 2011 Appl. Phys. Lett. 99 182108
[13]Lu W T, Wang S J, Wang Y L, Jiang H and Li W 2013 Phys. Lett. A 377 1368
[14]Wu Q S, Zhang S N and Yang S J 2008 J. Phys.: Condens. Matter 20 485210
[15]Sun L F, Fang C, Song Y and Guo Y 2010 J. Phys.: Condens. Matter 22 445303
[16]Li Y X 2010 J. Phys.: Condens. Matter 22 015302
[17]Bliokh Y P, Freilikher V, Savel'ev S and Nori F 2009 Phys. Rev. B 79 075123
[18]Cheng Z M, Savit R and Merlin R 1988 Phys. Rev. B 37 4375
[19]Axel F and Peyriere J 1989 J. Stat. Phys. 57 1013
[20]Ramezani Masir M, Vasilopoulos and Peeters F M 2009 New J. Phys. 11 095009
[21]Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
Related articles from Frontiers Journals
[1] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 057202
[2] Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang, Junwei Liu, and Hua Jiang. Magnus Hall Effect in Two-Dimensional Materials[J]. Chin. Phys. Lett., 2021, 38(5): 057202
[3] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 057202
[4] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 057202
[5] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 057202
[6] LIU Mi, ZHU Rui. Shot Noise of the Conductance through a Superconducting Barrier in Graphene[J]. Chin. Phys. Lett., 2015, 32(12): 057202
[7] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 057202
[8] TAN Xun-Qiong. Electronic Transport of the Adsorbed Trigonal Graphene Flake: A First Principles Calculation[J]. Chin. Phys. Lett., 2014, 31(12): 057202
[9] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 057202
[10] LI Ming-Jun, LONG Meng-Qiu, XU Hui. Effects of the Bridging Bond on Electronic Transport in a D-B-A Device[J]. Chin. Phys. Lett., 2013, 30(8): 057202
[11] WANG Ting-Dong, HUAI Ping. Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems[J]. Chin. Phys. Lett., 2013, 30(6): 057202
[12] ZHANG Yi-Jun, ZHAO Jing, ZOU Ji-Jun, NIU Jun, CHEN Xin-Long, CHANG Ben-Kang. The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(4): 057202
[13] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 057202
[14] LI Chuan-Feng, CHEN Geng, GONG Ming, LI Hai-Qiao, NIU Zhi-Chuan. Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2012, 29(9): 057202
[15] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 057202
Viewed
Full text


Abstract