Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 038901    DOI: 10.1088/0256-307X/33/3/038901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fractal Analysis of Mobile Social Networks
Wei Zheng1,2**, Qian Pan1, Chen Sun1, Yu-Fan Deng1, Xiao-Kang Zhao1, Zhao Kang1
1School Of Software, Nanchang Hangkong University, Nanchang 330063
2School of Mathematics and Statistics, Xidian University, Xi'an 710071
Cite this article:   
Wei Zheng, Qian Pan, Chen Sun et al  2016 Chin. Phys. Lett. 33 038901
Download: PDF(484KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fractal and self similarity of complex networks have attracted much attention in recent years. The fractal dimension is a useful method to describe the fractal property of networks. However, the fractal features of mobile social networks (MSNs) are inadequately investigated. In this work, a box-covering method based on the ratio of excluded mass to closeness centrality is presented to investigate the fractal feature of MSNs. Using this method, we find that some MSNs are fractal at different time intervals. Our simulation results indicate that the proposed method is available for analyzing the fractal property of MSNs.
Received: 09 September 2015      Published: 31 March 2016
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.70.-a (Information and communication theory)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/038901       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/038901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Zheng
Qian Pan
Chen Sun
Yu-Fan Deng
Xiao-Kang Zhao
Zhao Kang
[1]Xiao M, Wu J and Huang L 2014 IEEE Trans. Comput. 63 1682
[2]Wei P C, Sutanto J and Tan C H 2014 Int. J. Accounting Inf. Management. 22 321
[3]Lin K Y and Lu H P 2015 Internet Res. 25 107
[4]Bulut E and Szymanski B K 2012 IEEE Trans. Parallel Distributed Syst. 23 2254
[5]Dong W, Dave V and Qiu L 2011 INFOCOM 2011 Proc. IEEE (Shanghai Jiao Tong University, China 10–15 April 2011) p 1647
[6]Thilakarathna K, Viana A C and Seneviratne A 2007 Proceedings of the Fourteenth ACM International Symposium on Mobile ad hoc Networking and Computing 263
[7]Li M, Cao N and Yu S 2014 INFOCOM 2011 Proceedings IEEE (Shanghai Jiao Tong University, China 10–15 April 2011) p 2435
[8]Zhang H, Lan X, Wei D, Mahadevan S and Deng Y 2013 Mod. Phys. Lett. B 27 1350201
[9]Gallos L K, Song C and Makse H A 2007 Physica A 386 686
[10]Schneider C M, Kesselring T A and Andrade Jr J S 2012 Phys. Rev. E 86 016707
[11]Kim J S, Goh K I and Kahng B 2007 New J. Phys. 9 177
[12]Zhang H, Hu Y and Lan X 2014 Appl. Soft Comput. 25 514
[13]Sun Y and Zhao Y 2014 Phys. Rev. E 89 042809
[14]Song C, Havlin S and Makse H A 2005 Nature 433 392
[15]Song C, Gallos L K, Havlin S and Makse H A 2005 J. Stat. Mech. 2007 P03006
[16]Wei D J, Liu Q, Zhang H X, Hu Y, Deng Y and Mahadevan S 2013 Sci. Rep. 3 3049
[17]Wang D L, Yu Z G and Anh V 2012 Chin. Phys. B 21 080504
[18]Newman M E J 2004 Phys. Rev. E 70 056131
[19]Opsahl T, Agneessens F and Skvoretz J 2010 Soc. Networks 32 245
[20]Jahanbakhsh K, King V and Shoja G C 2012 Pervasive Mobile Computing 8 698
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 038901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 038901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 038901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 038901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 038901
[6] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 038901
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 038901
[8] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 038901
[9] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 038901
[10] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 038901
[11] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 038901
[12] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 038901
[13] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 038901
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 038901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 038901
Viewed
Full text


Abstract