CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Comparisons of Criteria for Analyzing the Dynamical Association of Solutes in Aqueous Solutions |
Liang Zhao1, Yu-Song Tu1**, Chun-Lei Wang2, Hai-Ping Fang2 |
1College of Physical Science and Technology, Yangzhou University, Yangzhou 225009 2Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
|
|
Cite this article: |
Liang Zhao, Yu-Song Tu, Chun-Lei Wang et al 2016 Chin. Phys. Lett. 33 038201 |
|
|
Abstract How to determine accurately the association states of solutes in aqueous systems is of fundamental importance in a variety of chemical, physical, and biological processes. We apply four widely used criteria to analyze the dynamic association processes of solutes, e.g., amphiphilic molecules, and to find the inappropriate selections of representative sites on solutes in these criteria may bring about appreciable influence on the estimation of dynamic association behaviors such as unrealistic packing radii and even misleading packing structures. It would be better to select dynamically representative sites on solute molecules based on the characteristic of solute associations. Our detailed discussions give a guide on how to determine an appropriate criterion to accurately analyze the association behaviors of solute molecules in aqueous solutions.
|
|
Received: 12 November 2015
Published: 31 March 2016
|
|
PACS: |
82.30.Nr
|
(Association, addition, insertion, cluster formation)
|
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
64.60.Q-
|
(Nucleation)
|
|
64.75.Yz
|
(Self-assembly)
|
|
|
|
|
[1] | Bode S A, Minten I J, Nolte R J and Cornelissen J J 2011 Nanoscale 3 2376 | [2] | Herves P, Perez-Lorenzo M, Liz-Marzan L M, Dzubiella J, Lu Y and Ballauff M 2012 Chem. Soc. Rev. 41 5577 | [3] | Liang Y, Ozawa M and Krueger A 2009 ACS Nano 3 2288 | [4] | Flytzani-Stephanopoulos M and Gates B C 2012 Annu. Rev. Chem. Biomol. Eng. 3 545 | [5] | Homouz D, Perham M, Samiotakis A, Cheung M S and Wittung-Stafshede P 2008 Proc. Natl. Acad. Sci. USA 105 11754 | [6] | Zhuang G C, Zhu X B and Wang W 2000 Chin. Phys. Lett. 17 589 | [7] | Peng G and Tian D 1992 Chin. Phys. Lett. 9 359 | [8] | Mittal J and Best R B 2008 Proc. Natl. Acad. Sci. USA 105 20233 | [9] | Sun Z, Liu J and Xu S 2005 Chin. Phys. Lett. 22 2119 | [10] | Ahmad M, Gu W and Helms V 2008 Angew. Chem. Int. Ed. 47 7626 | [11] | Tang Q, Tian J and Yao K 2006 Chin. Phys. Lett. 23 3033 | [12] | Das P, King J A and Zhou R 2011 Proc. Natl. Acad. Sci. USA 108 10514 | [13] | Cheung M S and Thirumalai D 2006 J. Mol. Biol. 357 632 | [14] | Wang Z, Wang F, Peng Y, Zheng Z and Han Y 2012 Science 338 87 | [15] | Walsh M R, Koh C A, Sloan E D, Sum A K and Wu D T 2009 Science 326 1095 | [16] | Gebauer D, V?lkel A and C?lfen H 2008 Science 322 1819 | [17] | Chen Q, Whitmer J K, Jiang S, Bae S C, Luijten E and Granick S 2011 Science 331 199 | [18] | Navrotsky A 2004 Proc. Natl. Acad. Sci. USA 101 12096 | [19] | Zangi R and Berne B J 2006 J. Phys. Chem. B 110 22736 | [20] | Cardinaux F, Zaccarelli E, Stradner A, Bucciarelli S, Farago B, Egelhaaf S U, Sciortino F and Schurtenberger P 2011 J. Phys. Chem. B 115 7227 | [21] | Mahmoudi M, Lynch I, Ejtehadi M R, Monopoli M P, Bombelli F B and Laurent S 2011 Chem. Rev. 111 5610 | [22] | Lin J, Zhang H, Chen Z, Zheng Y, Zhang Z and Ye H 2011 J. Phys. Chem. C 115 18991 | [23] | Kraft D J, Ni R, Smallenburg F, Hermes M, Yoon K, Weitz D A, van Blaaderen A, Groenewold J, Dijkstra M and Kegel W K 2012 Proc. Natl. Acad. Sci. USA 109 10787 | [24] | Liu S, Wei L, Hao L, Fang N, Chang M W, Xu R, Yang Y and Chen Y 2009 ACS Nano 3 3891 | [25] | Hussain S M, Braydich-Stolle L K, Schrand A M, Murdock R C, Yu K O, Mattie D M, Schlager J J and Terrones M 2009 Adv. Mater. 21 1549 | [26] | Morimoto Y, Horie M, Kobayashi N, Shinohara N and Shimada M 2013 Acc. Chem. Res. 46 770 | [27] | Zhang M, Zuo G H, Chen J X, Gao Y and Fang H P 2013 Sci. Rep. 3 1660 | [28] | Song B, Sun Q, Li H, Ge B, Pan J S, Wee A T S, Zhang Y, Huang S, Zhou R, Gao X, Huang F and Fang H 2014 Angew. Chem. Int. Ed. 53 6358 | [29] | Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H and Zhou R 2013 Nat. Nanotechnol. 8 594 | [30] | Liu J, Gao Y, Cao D, Zhang L and Guo Z 2011 Langmuir 27 7926 | [31] | Capito R M, Azevedo H S, Velichko Y S, Mata A and Stupp S I 2008 Science 319 1812 | [32] | Yang J, Shi G, Tu Y and Fang H 2014 Angew. Chem. Int. Ed. 126 10354 | [33] | Cao X, Tan Y and Xu G 2007 Chin. Phys. Lett. 24 411 | [34] | Nam-Goo C, Teruo K and Hidekazu T 2011 Nanotechnology 22 185306 | [35] | Patzke G R, Zhou Y, Kontic R and Conrad F 2011 Angew. Chem. Int. Ed. 50 826 | [36] | Fujiwara S, Itoh T, Hashimoto M and Horiuchi R 2009 J. Chem. Phys. 130 144901 | [37] | Sammalkorpi M, Sanders S, Panagiotopoulos A Z, Karttunen M and Haataja M 2011 J. Phys. Chem. B 115 1403 | [38] | Velinova M, Sengupta D, Tadjer A V and Marrink S J 2011 Langmuir 27 14071 | [39] | Marrink S J, Tieleman D P and Mark A E 2000 J. Phys. Chem. B 104 12165 | [40] | Sanders S A, Sammalkorpi M and Panagiotopoulos A Z 2012 J. Phys. Chem. B 116 2430 | [41] | Sammalkorpi M, Karttunen M and Haataja M 2007 J. Phys. Chem. B 111 11722 | [42] | Zhao L, Wang C, Liu J, Wen B, Tu Y, Wang Z and Fang H 2014 Phys. Rev. Lett. 112 078301 | [43] | Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 | [44] | Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 | [45] | van Gunsteren W and Berendsen H 1987 BIOMOS bv Nijenborgh 4 9747 | [46] | Stillinger J F H 1963 J. Chem. Phys. 38 1486 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|