CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer |
Yuan-Yuan Guo1,2, Fei-Fei Zhao1,2, Hai-Bin Xue1,2**, Zhe-Jie Liu1,2 |
1Key Laboratory of Advanced Transducers & Intelligent Control System (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024 2College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
|
|
Cite this article: |
Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue et al 2016 Chin. Phys. Lett. 33 037501 |
|
|
Abstract The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly magnetized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau–Lifshitz–Gilbert–Slonczewski equation. It is demonstrated numerically that the second-order uniaxial anisotropy plays a significant role in the occurrence of a zero-magnetic-field steady-state precession, which can be understood in terms of the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to the Gilbert damping. In particular, a relatively large zero-magnetic-field-oscillation current region, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by modulating the second-order uniaxial anisotropy of the free layer. These results suggest a tunable zero-magnetic-field STNO, and it may be a promising configuration for STNO's applications in future wireless communications.
|
|
Received: 25 November 2015
Published: 31 March 2016
|
|
PACS: |
75.78.-n
|
(Magnetization dynamics)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
|
|
|
[1] | Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149 | [2] | Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502 | [3] | Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380 | [4] | Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nature 437 389 | [5] | Deac A M, Fukushima A, Kubota H, Machara H, Suzuki Y, Ysa S, Nagamine Y, Tsunekawa K, Diayaprawira D D and Watanabe N 2008 Nat. Phys. 4 803 | [6] | Dussaux A, Grimaldi E, Salles B R, Jenkins A S, Khavalkovskiy A V, Bortolotti P, Grollier J, Kubota H, Fukushima A and Yakushiji K 2014 Appl. Phys. Lett. 105 022404 | [7] | Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K and Jiang H 2012 ACS Nano 6 6115 | [8] | Chio H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C, Park S Y and Park C S 2014 Sci. Rep. 4 5486 | [9] | Zhu J G, Zhu X and Tang Y 2008 IEEE Trans. Magn. 44 125 | [10] | Sbiaa R 2015 J. Phys. D: Appl. Phys. 48 195001 | [11] | Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S and Childress J R 2010 Nanotechnology 21 235202 | [12] | Suto H, Nagasawa T, Kudo K, Mizushima K amd Sato R 2011 Appl. Phys. Express 4 013003 | [13] | Kubota H, Yakushiju K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yakata S, Taniguchi T, Arai H and Imamura H 2013 Appl. Phys. Express 6 103003 | [14] | Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H and Imamura H 2013 Appl. Phys. Express 6 123003 | [15] | Tamaru S, Kubota H, Yakushiji K, Nazaki T, Konoto M, Fukushima A, Imamura H, Taniguchi T, Arai H, Yamji T and Yuasa S 2014 Appl. Phys. Express 7 063005 | [16] | Zhou Y, Zha C L, Bonetti S, Persson J and Akerman J 2008 Appl. Phys. Lett. 92 262508 | [17] | He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G and Zou B S 2010 Eur. Phys. J. B 73 417 | [18] | Fowley C, Sluka V, Bernert K, Lindner J, Fassbender J, Rippard W H, Pufall R, Russek S E and Deac A M 2014 Appl. Phys. Express 7 043001 | [19] | Guo Y Y, Hao J L, Xue H B and Liu Z J 2015 Acta Phys. Sin. 64 198502 (in Chinese) | [20] | Taniguchi T, Tsunegi S, Kubota H and Imamura H 2014 Appl. Phys. Lett. 104 152411 | [21] | Guo Y Y, Xue H B and Liu Z J 2015 AIP Adv. 5 057114 | [22] | Arau H, Matsumoto R, Yuasa S and Imamura H 2015 Appl. Phys. Express 8 083005 | [23] | Konoto M, Imamura H, Taniguchi T, Yakushiji K, Kubota H, Fukushima A, Ando K and Yuasa S 2013 Appl. Phys. Express 6 073002 | [24] | Slonczewski J C 1989 Phys. Rev. B 39 6995 | [25] | Slonczewski J C 2002 J. Magn. Magn. Mater. 247 324 | [26] | Boulle O, Cros V, Grollier J, Pereira L G, Deranlot C and Petroff F 2008 Phys. Rev. B 77 174403 | [27] | Bala P, Gmitraz M and Barnas J 2009 Phys. Rev. B 80 174404 | [28] | Osborn J A 1945 Phys. Rev. 67 351 | [29] | Taniguchi T, Utsumi Y and Imamura H 2013 Phys. Rev. B 88 214414 | [30] | Newhall K A and Eijnden E V 2013 J. Appl. Phys. 113 184105 | [31] | Taniguchi T 2014 Appl. Phys. Express 7 053004 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|