Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 037501    DOI: 10.1088/0256-307X/33/3/037501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer
Yuan-Yuan Guo1,2, Fei-Fei Zhao1,2, Hai-Bin Xue1,2**, Zhe-Jie Liu1,2
1Key Laboratory of Advanced Transducers & Intelligent Control System (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024
2College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
Cite this article:   
Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue et al  2016 Chin. Phys. Lett. 33 037501
Download: PDF(675KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The zero-magnetic-field oscillation behavior of spin torque nano-oscillator (STNO) with a perpendicularly magnetized free layer with second-order uniaxial anisotropy is studied theoretically based on the Landau–Lifshitz–Gilbert–Slonczewski equation. It is demonstrated numerically that the second-order uniaxial anisotropy plays a significant role in the occurrence of a zero-magnetic-field steady-state precession, which can be understood in terms of the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to the Gilbert damping. In particular, a relatively large zero-magnetic-field-oscillation current region, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by modulating the second-order uniaxial anisotropy of the free layer. These results suggest a tunable zero-magnetic-field STNO, and it may be a promising configuration for STNO's applications in future wireless communications.
Received: 25 November 2015      Published: 31 March 2016
PACS:  75.78.-n (Magnetization dynamics)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/037501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/037501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Yuan Guo
Fei-Fei Zhao
Hai-Bin Xue
Zhe-Jie Liu
[1]Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149
[2]Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502
[3]Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
[4]Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nature 437 389
[5]Deac A M, Fukushima A, Kubota H, Machara H, Suzuki Y, Ysa S, Nagamine Y, Tsunekawa K, Diayaprawira D D and Watanabe N 2008 Nat. Phys. 4 803
[6]Dussaux A, Grimaldi E, Salles B R, Jenkins A S, Khavalkovskiy A V, Bortolotti P, Grollier J, Kubota H, Fukushima A and Yakushiji K 2014 Appl. Phys. Lett. 105 022404
[7]Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K and Jiang H 2012 ACS Nano 6 6115
[8]Chio H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C, Park S Y and Park C S 2014 Sci. Rep. 4 5486
[9]Zhu J G, Zhu X and Tang Y 2008 IEEE Trans. Magn. 44 125
[10]Sbiaa R 2015 J. Phys. D: Appl. Phys. 48 195001
[11]Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S and Childress J R 2010 Nanotechnology 21 235202
[12]Suto H, Nagasawa T, Kudo K, Mizushima K amd Sato R 2011 Appl. Phys. Express 4 013003
[13]Kubota H, Yakushiju K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yakata S, Taniguchi T, Arai H and Imamura H 2013 Appl. Phys. Express 6 103003
[14]Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H and Imamura H 2013 Appl. Phys. Express 6 123003
[15]Tamaru S, Kubota H, Yakushiji K, Nazaki T, Konoto M, Fukushima A, Imamura H, Taniguchi T, Arai H, Yamji T and Yuasa S 2014 Appl. Phys. Express 7 063005
[16]Zhou Y, Zha C L, Bonetti S, Persson J and Akerman J 2008 Appl. Phys. Lett. 92 262508
[17]He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G and Zou B S 2010 Eur. Phys. J. B 73 417
[18]Fowley C, Sluka V, Bernert K, Lindner J, Fassbender J, Rippard W H, Pufall R, Russek S E and Deac A M 2014 Appl. Phys. Express 7 043001
[19]Guo Y Y, Hao J L, Xue H B and Liu Z J 2015 Acta Phys. Sin. 64 198502 (in Chinese)
[20]Taniguchi T, Tsunegi S, Kubota H and Imamura H 2014 Appl. Phys. Lett. 104 152411
[21]Guo Y Y, Xue H B and Liu Z J 2015 AIP Adv. 5 057114
[22]Arau H, Matsumoto R, Yuasa S and Imamura H 2015 Appl. Phys. Express 8 083005
[23]Konoto M, Imamura H, Taniguchi T, Yakushiji K, Kubota H, Fukushima A, Ando K and Yuasa S 2013 Appl. Phys. Express 6 073002
[24]Slonczewski J C 1989 Phys. Rev. B 39 6995
[25]Slonczewski J C 2002 J. Magn. Magn. Mater. 247 324
[26]Boulle O, Cros V, Grollier J, Pereira L G, Deranlot C and Petroff F 2008 Phys. Rev. B 77 174403
[27]Bala P, Gmitraz M and Barnas J 2009 Phys. Rev. B 80 174404
[28]Osborn J A 1945 Phys. Rev. 67 351
[29]Taniguchi T, Utsumi Y and Imamura H 2013 Phys. Rev. B 88 214414
[30]Newhall K A and Eijnden E V 2013 J. Appl. Phys. 113 184105
[31]Taniguchi T 2014 Appl. Phys. Express 7 053004
Related articles from Frontiers Journals
[1] Yangping Wang, Hongyan Zhou, Yibing Zhao, Fufu Liu, and Changjun Jiang. Low Voltage Reversible Manipulation of Ferromagnetic Resonance Response in CoFeB/HfO$_{2}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 037501
[2] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 037501
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 037501
[4] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 037501
[5] Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao, Yafei Zhao, Jiai Ning, Kunpeng Zhang, Xianyang Lu, Liang He, and Yongbing Xu. Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films[J]. Chin. Phys. Lett., 2020, 37(7): 037501
[6] Xiao-Kuo Yang, Bin Zhang, Jia-Hao Liu, Ming-Liang Zhang, Wei-Wei Li, Huan-Qing Cui, Bo Wei. Shape Anisotropy and Resonance Mode Guided Reliable Interconnect Design for In-plane Magnetic Logic[J]. Chin. Phys. Lett., 2018, 35(5): 037501
[7] CHEN Cheng, PIAO Hong-Guang, SHIM Je-Ho, PAN Li-Qing, KIM Dong-Hyun. RC-Circuit-Like Dynamic Characteristic of the Magnetic Domain Wall in Flat Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2015, 32(08): 037501
Viewed
Full text


Abstract