Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 037303    DOI: 10.1088/0256-307X/33/3/037303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin Caloritronic Transport of 1,3,5-Triphenylverdazyl Radical
Qiu-Hua Wu1, Peng Zhao1**, De-Sheng Liu2
1School of Physics and Technology, University of Jinan, Jinan 250022
2School of Physics, Shandong University, Jinan 250100
Cite this article:   
Qiu-Hua Wu, Peng Zhao, De-Sheng Liu 2016 Chin. Phys. Lett. 33 037303
Download: PDF(856KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate theoretically the spin caloritronic transport properties of a stable 1,3,5-triphenylverdazyl (TPV) radical sandwiched between Au electrodes through different connection fashions. Obvious spin Seebeck effect can be observed in the para-connection fashion. Furthermore, a pure spin current and a completely spin-polarized current can be realized by tuning the gate voltage. Furthermore, a 100% spin polarization without the need of gate voltage can be obtained in the meta-connection fashion. These results demonstrate that TPV radical is a promising material for spin caloritronic and spintronic applications.
Received: 09 October 2015      Published: 31 March 2016
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  85.65.+h (Molecular electronic devices)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/037303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/037303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiu-Hua Wu
Peng Zhao
De-Sheng Liu
[1]Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541
[2]Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F and Chen G 2012 Energy Environ. Sci. 5 5147
[3]Poehler T O and Katz H E 2012 Energy Environ. Sci. 5 8110
[4]Wolf S, Awschalom D, Buhrman R, Daughton J, von Molnar S, Roukes M, Chtchelkanova A and Treger D 2001 Science 294 1488
[5]Fert A 2008 Rev. Mod. Phys. 80 1517
[6]Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391
[7]Boona S R, Myers R C and Heremans J P 2014 Energy Environ. Sci. 7 885
[8]Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[9]Valenzuela S and Tinkham M 2006 Nature 442 176
[10]Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
[11]Kimura K, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
[12]Rajca A 1994 Chem. Rev. 94 871
[13]Herrmann C, Solomon G C and Ratner M A 2010 J. Am. Chem. Soc. 132 3682
[14]Matsuura Y 2015 Chem. Phys. Lett. 619 23
[15]Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335
[16]Kuhn R and Trischmann H 1963 Angew. Chem. Int. Ed. 2 155
[17]Kuhn R and Trischmann H 1964 Monatsh. Chem. 95 457
[18]Azuma N, Yamauchi J, Mukai K, Ohya-Nishiguchi H and Deguchi Y 1973 Bull. Chem. Soc. Jpn. 46 2728
[19]Allemand P M, Srdanov G and Wudl F 1990 J. Am. Chem. Soc. 112 9391
[20]Zhao P, Liu D S, Liu H Y, Li S J and Chen G 2013 Org. Electron. 14 1109
[21]Wu Q H, Zhao P and Liu D S 2014 Phys. Lett. A 378 561
[22]Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408
[23]Larsen N, Biebuyck H, Delamarche E and Michel B 1997 J. Am. Chem. Soc. 119 3017
[24]Damle P, Rakshit T, Paulsson M and Datta S 2002 IEEE Trans. Nanotechnol. 1 145
[25]Andreoni W, Curioni A and Gr?nbeckH 2000 Int. J. Quantum Chem. 80 598
[26]Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407(R)
[27]Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[28]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29]Troullier N and Martins J 1991 Phys. Rev. B 43 1993
[30]Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[31]Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejón P 2003 Comput. Mater. Sci. 27 151
[32]Chappert C, Fert A and van Dau F N 2007 Nat. Mater. 6 813
[33]Ke S H, Yang W and Baranger H U 2008 Nano Lett. 8 3257
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 037303
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 037303
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 037303
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 037303
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 037303
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 037303
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 037303
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 037303
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 037303
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 037303
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 037303
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 037303
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 037303
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 037303
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 037303
Viewed
Full text


Abstract