Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 037302    DOI: 10.1088/0256-307X/33/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction
Jian-Hui Yuan1**, Ni Chen1, Hua Mo1, Yan Zhang1, Zhi-Hai Zhang2**
1Department of Physics, Guangxi Medical University, Nanning 530021
2School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051
Cite this article:   
Jian-Hui Yuan, Ni Chen, Hua Mo et al  2016 Chin. Phys. Lett. 33 037302
Download: PDF(627KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the tunneling magnetoresistance via $\delta$ doping in a graphene-based magnetic tunnel junction in detail. It is found that the transmission probability and the conductance oscillates with the position and the aptitude of the $\delta$ doping. Also, both the transmission probability and the conductance at the parallel configuration are suppressed by the magnetic field more obviously than that at the antiparallel configuration, which implies a large negative magnetoresistance for this device. The results show that the negative magnetoresistance of over 300% at $B=1.0$ T is observed by choosing suitable doped parameters, and the temperature plays an important role in the magnetoresistance. Thus it is possible to open a way to effectively manipulate the magnetoresistance devices, and to make a type of magnetoresistance device by controlling the structural parameter of the $\delta$ doping.
Received: 23 October 2015      Published: 31 March 2016
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  03.65.Pm (Relativistic wave equations)  
  73.43.Cd (Theory and modeling)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/037302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/037302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Hui Yuan
Ni Chen
Hua Mo
Yan Zhang
Zhi-Hai Zhang
[1]Novoselov K S, Geim A K, Morozov S V et al 2004 Science 306 666
[2]Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3]Kim K S, Zhao Y et al 2009 Nature 457 706
[4]Li X, Cai W, An J et al 2009 Science 324 1312
[5]Friedman A L, Robinson J T, Perkins F K and Campbell P M 2011 Appl. Phys. Lett. 99 022108
[6]Xu H, Heinzel T, Evaldsson M and Zozoulenko I V 2008 Phys. Rev. B 77 245401
[7]Masir M R, Vasilopoulos P and Peeters F M 2010 Phys. Rev. B 82 115417
[8]Guo Y Y and Guo Y 2009 J. Appl. Phys. 105 063717
[9]Zhai F and Chang K 2008 Phys. Rev. B 77 113409
[10]Masir M R, Vasilopoulos P and Peeters F M 2009 New J. Phys. 11 095009
[11]Tan L Z, Park C H and Louie S G 2010 Phys. Rev. B 81 195426
[12]Park C H, Yang L, Son Y W, Cohen M L and Louie S G 2008 Nat. Phys. 4 213
[13]Biswas R, Biswas A, Hui N and Sinha C 2010 J. Appl. Phys. 108 043708
[14]Luca D A and Alessandro D M 2009 Phys. Rev. B 79 045420
[15]Friedman A L, Erve O M J, Robinson J T, WhitenerK E and Jonker B T 2015 ACS Nano 9 6747
[16]Erve O M J, Friedman A L, Li C H, Robinson J T, Connell J, Lauhon L J and Jonker B T 2015 Nat. Commun. 6 7541
[17]Friedman A L, Erve O M J, Li C H, Robinson J T and Jonker B T 2014 Nat. Commun. 5 3161
[18]Cobas E, Friedman A L, Erve O M J, Robinson J T and Jonker B T 2013 IEEE Trans. Magn. 49 4343
[19]Friedman A L, Tedesco J L, Campbell P M et al 2010 Nano Lett. 10 3962
[20]Matis B R, Bulat F A, Friedman A L, Houston B H and Baldwin J W 2012 Phys. Rev. B 85 195437
[21]Cerchez M, Hugger S, Heinzel T and Schulz N 2007 Phys. Rev. B 75 035341
[22]Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518
[23]Xu H Z and Shi Z 2004 Phys. Rev. B 69 237201
[24]Lu J D 2009 Appl. Surf. Sci. 255 7348
[25]Lu J D, Xu B, Liu H Y and Dai H M 2014 Phys. Lett. A 378 286
[26]Myoung N and Ihm G 2011 J. Appl. Phys. 109 053716
[27]Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204
[28]Ghosh S and Sharma M 2011 J. Phys.: Condens. Matter 23 055501
[29]Yuan J H, Zhang J J, Zeng Q J, Zhang J P and Cheng Z 2011 Physica B 406 4214
[30]Yuan J H, Zhang Y, Guo X, Zhang J and Mo H 2015 Solid State Commun. 206 31
[31]Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[32]van Wees B J, van Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, van der Marel D and Foxon C T 1988 Phys. Rev. Lett. 60 848
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 037302
[2] Gang Shi, Mingjie Zhang, Dayu Yan, Honglei Feng, Meng Yang, Youguo Shi, Yongqing Li. Anomalous Hall Effect in Layered Ferrimagnet MnSb$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 037302
[3] Meng Ye, Cai-Juan Xia, Bo-Qun Zhang, Yue Ma. Negative Differential Resistance and Rectifying Effects of Diblock Co-Oligomer Molecule Devices Sandwiched between C$_{2}$N-$h$2D Electrodes[J]. Chin. Phys. Lett., 2019, 36(4): 037302
[4] Yu-Zhuo LV, Peng ZHAO. Spin Caloritronic Transport of Tree-Saw Graphene Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(1): 037302
[5] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 037302
[6] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 037302
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 037302
[8] Yang Liu, Cai-Juan Xia, Bo-Qun Zhang, Ting-Ting Zhang, Yan Cui, Zhen-Yang Hu. Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons[J]. Chin. Phys. Lett., 2018, 35(6): 037302
[9] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 037302
[10] Dou-Dou Sun, Wen-Yong Su, Feng Wang, Wan-Xiang Feng, Cheng-Lin Heng. Electron Transport Properties of Two-Dimensional Monolayer Films from Au-P-Au to Au-Si-Au Molecular Junctions[J]. Chin. Phys. Lett., 2018, 35(1): 037302
[11] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Spin Caloritronic Transport of (2$\times$1) Reconstructed Zigzag MoS$_{2}$ Nanoribbons[J]. Chin. Phys. Lett., 2017, 34(10): 037302
[12] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 037302
[13] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 037302
[14] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 037302
[15] Yu-Zhuo Lv, Peng Zhao, De-Sheng Liu. Magnetic Transport Properties of Fe-Phthalocyanine Dimer with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2017, 34(4): 037302
Viewed
Full text


Abstract