Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 037301    DOI: 10.1088/0256-307X/33/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films and the Influence of Various Hole-Transporting Layers on the Performance
Hui-Li Yin1,2, Su-Ling Zhao1,2**, Zheng Xu1,2, Li-Zhi Sun1,2
1Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044
2Key Laboratory of Luminescence and Optical Information (Ministry of Education), Beijing Jiaotong University, Beijing 100044
Cite this article:   
Hui-Li Yin, Su-Ling Zhao, Zheng Xu et al  2016 Chin. Phys. Lett. 33 037301
Download: PDF(625KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a systematic analysis of the exciton-recombination zone within all-quantum-dot (QD) multilayer films using sensing QD layers in QD-based light-emitting diodes (QLEDs), and demonstrate the all-QD multilayer films with different sequences of layers prepared by inserting a sensing blue QD layer denoted as B at various positions within four red QD multilayers denoted as R. We also use different hole transporting layers (PVK, CBP as well as poly-TPD) to prevent the formation of leakage current and to improve the luminance. The results show that the total EL emission is mostly at the fourth (60%) and fifth (40%) QD monolayers, adjacent to ITO. This presents both decreasing current density and increasing brightness with different hole transporting layers, thus resulting in more efficient performance.
Received: 05 December 2015      Published: 31 March 2016
PACS:  73.21.La (Quantum dots)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/037301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui-Li Yin
Su-Ling Zhao
Zheng Xu
Li-Zhi Sun
[1]Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2012 Nat. Photon. 7 13
[2]Bae W K, Kwak J, Lim J, Lee D, Nam M K, Char K, Lee C and Lee S 2010 Nano Lett. 10 2368
[3]Yang X, Zhao D, Leck K S, Tan S T, Tang Y X, Zhao J, Demir H V and Sun X W 2012 Adv. Mater. 24 4180
[4]Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2009 Nano Lett. 9 2532
[5]Qian L, Zheng Y, Xue J and Holloway P H 2011 Nat. Photon. 5 543
[6]Schreuder M A, Xiao K, Ivanov I N, Weiss S M and Rosenthal S J 2010 Nano Lett. 10 573
[7]Tan Z, Zhang F, Zhu T, Xu J, Wang A Y, Dixon J D, Li L, Zhang Q and Mohney S E 2007 Nano Lett. 7 3803
[8]Tan Z, Zhang Y, Xie C, Su H, Liu J, Zhang C, Dellas N, Mohney S E, Wang Y, Wang J and Xu J 2011 Adv. Mater. 23 3553
[9]Colvin V, Schlamp M and Alivisatos A 1994 Nature 370 354
[10]Kim L, Anikeeva P O, Coe-Sullivan S A, Steckel J S, Bawendi M G and Bulovic V 2008 Nano Lett. 8 4513
[11]Wood V, Panzer M, Halpert J, Caruge J M, Bawendi M and Bulovic V 2009 ACS Nano 3 3581
[12]Zhao J, Bardecker J A, Munro A M, Liu M S, Niu Y, Ding I K, Luo J, Chen B, Jen A K Y and Ginger D S 2006 Nano Lett. 6 463
[13]Caruge J M, Halpert J E, Bulovic V and Bawendi M G 2006 Nano Lett. 6 2991
[14]Caruge J, Halpert J, Wood V, Bulovic V and Bawendi M 2008 Nat. Photon. 2 247
[15]Anikeeva P O, Halpert J E, Bawendi M G and Bulovic V 2007 Nano Lett. 7 2196
[16]Schlamp M, Peng X and Alivisatos A 1997 Appl. Phys. 82 5837
[17]Li J J, Wang Y A, Guo W, Keay J C, Mishima T D, Johnson M B and Peng X 2003 J. Am. Chem. Soc. 125 12567
[18]Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
[19]Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407
[20]Kim T H, Cho K S, Lee E K, Lee S J, Chae J, Kim J W, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M and Kim K 2011 Nat. Photon. 5 176
[21]Franzl T, Klar T A, Schietinger S, Rogach A L and Feldmann J 2004 Nano Lett. 4 1599
Related articles from Frontiers Journals
[1] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 037301
[2] Jiyuan Bai, Kongfa Chen, Pengyu Ren, Jianghua Li, Zelong He, and Li Li. Fano Effect and Spin-Polarized Transport in a Triple-Quantum-Dot Interferometer Attached to Two Ferromagnetic Leads[J]. Chin. Phys. Lett., 2020, 37(12): 037301
[3] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 037301
[4] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 037301
[5] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 037301
[6] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 037301
[7] LI Jian, ZHANG Dong. Single- and Few-Electron States in Deformed Topological Insulator Quantum Dots[J]. Chin. Phys. Lett., 2015, 32(4): 037301
[8] JEONG Heejun. Current Fluctuations in a Semiconductor Quantum Dot with Large Energy Spacing[J]. Chin. Phys. Lett., 2014, 31(12): 037301
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Rectification Effect of the Heat Generation by Electric Current in a Quantum Dot Molecular[J]. Chin. Phys. Lett., 2014, 31(05): 037301
[10] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 037301
[11] A. Azhagu Parvathi, A. John Peter, Chang Kyoo Yoo. Nonlinear Optical Properties in a Quantum Dot of Some Polar Semiconductors[J]. Chin. Phys. Lett., 2013, 30(10): 037301
[12] LI Zhen-Shan, PAN Hui, LÜ Rong. Spin-Polarized Currents in Double Quantum Dots with Rashba Spin-Orbit Interactions[J]. Chin. Phys. Lett., 2013, 30(8): 037301
[13] YU Hong-Yi, LUO Yu, YAO Wang . The Nuclear Dark State under Dynamical Nuclear Polarization[J]. Chin. Phys. Lett., 2013, 30(7): 037301
[14] QIAN Xin-Ye, CHEN Kun-Ji, HUANG Jian, WANG Yue-Fei, FANG Zhong-Hui, XU Jun, HUANG Xin-Fan . Room-Temperature Multi-Peak NDR in nc-Si Quantum-Dot Stacking MOS Structures for Multiple Value Memory and Logic[J]. Chin. Phys. Lett., 2013, 30(7): 037301
[15] SHI Yong, MA Zhong-Yuan, CHEN Kun-Ji, JIANG Xiao-Fan, LI Wei, HUANG Xin-Fan, XU Ling, XU Jun, FENG Duan . The Effect of Multiple Interface States and nc-Si Dots in a Nc-Si Floating Gate MOS Structure Measured by their GV Characteristics[J]. Chin. Phys. Lett., 2013, 30(7): 037301
Viewed
Full text


Abstract