CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$ |
Wei-Cheng Lee1,2, Congjun Wu1** |
1Department of Physics, University of California, San Diego, California, 92093, USA
2Department of Physics, Applied Physics, and Astronomy, Binghamton University-State University of New York, Binghamton, USA |
|
Cite this article: |
Wei-Cheng Lee, Congjun Wu 2016 Chin. Phys. Lett. 33 037201 |
|
|
Abstract The thermodynamic properties of the bilayer ruthenate compound Sr$_3$Ru$_2$O$_7$ at very low temperatures are investigated by using a tight-binding model yielding the realistic band structure combined with the on-site interactions treated at the mean-field level. We find that both the total density of states at the Fermi energy and the entropy exhibit a sudden increase near the critical magnetic field for the nematic phase, echoing the experimental findings. A new mechanism to explain the anisotropic transport properties is proposed based on scatterings at the anisotropic domain boundaries. Our results suggest that extra cares are necessary to isolate the contributions due to the quantum criticality from the band structure singularity in Sr$_3$Ru$_2$O$_7$.
|
|
Received: 12 February 2016
Published: 31 March 2016
|
|
PACS: |
72.80.Ga
|
(Transition-metal compounds)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
|
|
|
[1] |
Grigera S A et al 2001 Science 294 329 |
[2] |
Perry R S et al 2001 Phys. Rev. Lett. 86 2661 |
[3] |
Grigera S A et al 2003 Phys. Rev. B 67 214427 |
[4] |
Grigera S A et al 2004 Science 306 1154 |
[5] |
Borzi R A et al 2007 Science 315 214 |
[6] |
Millis A J, Schofield A J, Lonzarich G G and Grigera S A 2002 Phys. Rev. Lett. 88 217204 |
[7] |
Green et al A G 2005 Phys. Rev. Lett. 95 086402 |
[8] |
Kee H Y and Kim Y B 2005 Phys. Rev. B 71 184402 |
[9] |
Yamase H and Katanin A 2007 J. Phys. Soc. Jpn. 76 073706 |
[10] |
Yamase H 2007 Phys. Rev. B 76 155117 |
[11] |
Puetter C, Doh H and Kee H Y 2007 Phys. Rev. B 76 235112 |
[12] |
Berridge A M, Green A G, Grigera S A and Simons B D 2009 Phys. Rev. Lett. 102 136404 |
[13] |
Berridge A M, Grigera S A, Simons B D and Green A G 2010 Phys. Rev. B 81 054429 |
[14] |
Lee W C and Wu C 2009 Phys. Rev. B 80 104438 |
[15] |
Raghu S et al 2009 Phys. Rev. B 79 214402 |
[16] |
Puetter C M, Rau J G and Kee H Y 2010 Phys. Rev. B 81 081105 |
[17] |
Fischer M H and Sigrist M 2010 Phys. Rev. B 81 064435 |
[18] |
Lee W C, Arovas D P and Wu C 2010 Phys. Rev. B 81 184403 |
[19] |
Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 70401 |
[20] |
Tamai A et al 2008 Phys. Rev. Lett. 101 026407 |
[21] |
Lee J et al 2009 Nat. Phys. 5 800 |
[22] |
Rost A W et al 2009 Science 325 1360 |
[23] |
Rost A W et al 2010 Phys. Status Solidi B 247 513 |
[24] |
Hertz J A 1976 Phys. Rev. B 14 1165 |
[25] |
Millis A J 1993 Phys. Rev. B 48 7183 |
[26] |
Iwaya K et al 2007 Phys. Rev. Lett. 99 057208 |
[27] |
Liebsch A and Lichtenstein A 2000 Phys. Rev. Lett. 84 1591 |
[28] |
Eremin I, Manske D and Bennemann K 2002 Phys. Rev. B 65 220502 |
[29] |
Hammel P C et al 1998 Phys. Rev. B 57 R712 |
[30] |
Teitel'baum G B, Büchner B and de Gronckel H 2000 Phys. Rev. Lett. 84 2949 |
[31] |
Singer P M, Hunt A W and Imai T 2002 Phys. Rev. Lett. 88 047602 |
[32] |
Lang G et al 2010 Phys. Rev. Lett. 104 097001 |
[33] |
Ishida K et al 1997 Phys. Rev. B 56 R505 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|