CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Splitting Phenomenon Induced by Magnetic Field in Metallic Carbon Nanotubes |
Gui-Li Yu1**, Yong-Lei Jia2, Gang Tang1 |
1Department of Physics, China University of Mining and Technology, Xuzhou 221116 2College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000
|
|
Cite this article: |
Gui-Li Yu, Yong-Lei Jia, Gang Tang 2016 Chin. Phys. Lett. 33 037101 |
|
|
Abstract In the framework of the tight-binding model, the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes, with the axial magnetic field applied. From our calculations, it is found that for the $M_{11}$ and $M_{22}$ transitions, the exciton states are split into four separate column states by the applied magnetic field due to the symmetry breaking. More interesting is that the splitting can be directly reflected from the linear absorption spectra, which are dominated by four main absorption peaks. In addition, the splitting with increasing the axial magnetic field is also calculated, which increases linearly with the applied magnetic field. The obtained results are expected to be detected by the future experiments.
|
|
Received: 28 September 2015
Published: 31 March 2016
|
|
PACS: |
71.35.-y
|
(Excitons and related phenomena)
|
|
71.15.Qe
|
(Excited states: methodology)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
78.67.Ch
|
(Nanotubes)
|
|
|
|
|
[1] | Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Mperial College Press) | [2] | White C T, Robertson D H and Mintmire J W 1993 Phys. Rev. B 47 5485 | [3] | Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett. 68 1579 | [4] | Chang E, Bussi G, Ruini A and Molinari E 2004 Phys. Rev. Lett. 92 196401 | [5] | Perebeinos V, Tersoff J and Avouris P 2004 Phys. Rev. Lett. 92 257402 | [6] | Spataru C D, Ismail-Beigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402 | [7] | Wang F, Dukovic G, Brus L E and Heinz T F 2005 Science 308 838 | [8] | Maultzsch J, Pomraenke R, Reich S, Chang E, Prezzi D, Ruini A, Molinari E, Strano M S, Thomsen C and Lienau C 2005 Phys. Rev. B 72 241402(R) | [9] | Jia Y L, Yu G L and Dong J M 2009 Nanotechnology 20 155708 | [10] | Deslippe J, Spataru C, Prendergast D and Louie S G 2007 Nano Lett. 7 1626 | [11] | Malic E, Maultzsch J, Reich S and Knorr A 2010 Phys. Rev. B 82 035433 | [12] | Malic E, Maultzsch J, Reich S and Knorr A 2010 Phys. Rev. B 82 115439 | [13] | Berciaud S, Voisin C, Yan H, Chandra B, Caldwell R, Shan Y, Brus L E, Hone J and Heinz T F 2010 Phys. Rev. B 81 041414(R) | [14] | May P, Telg H, Zhong G F, Robertson J, Thomsen C and Maultzsch J 2010 Phys. Rev. B 82 195412 | [15] | Wang F, Cho D J, Kessler B, Deslippe J, Schuch P J, Louie S G, Zettl A, Heinz T F and Shen Y R 2007 Phys. Rev. Lett. 99 227401 | [16] | Yu G L, Li G C, Jia Y L and Tang G 2014 Chin. Phys. Lett. 31 097102 | [17] | Bachtold A, Strunk C, Salvetat J P, Bonard J M, Forro L, Nussbaumer T and Schonenberger C 1999 Nature 397 673 | [18] | Coskun U C, Wei T C, Vishveshwara S, Goldbart P M and Bezryadin A 2004 Science 304 1132 | [19] | Cao J, Wang Q, Rolandi M and Dai H 2004 Phys. Rev. Lett. 93 216803 | [20] | Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 1255 | [21] | Zaric S, Ostojic G N, Kono J, Shaver J, Moore V C, Strano M S, Hauge R H, Smalley R E and Wei X 2004 Science 304 1129 | [22] | Zaric S, Ostojic G N, Shaver J, Kono J, Portugall O, Frings P H, Rikken G L J A, Furis M, Crooker S A, Wei X, Moore V C, Hauge R H and Smalley R E 2006 Phys. Rev. Lett. 96 016406 | [23] | Ando T 1997 J. Phys. Soc. Jpn. 66 1066 | [24] | Yu G L, Jia Y L and Dong J M 2007 Phys. Rev. B 76 125403 | [25] | Orr B J and Ward J F 1971 Mol. Phys. 20 513 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|