CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles |
Jing-He Wu, Chang-Xin Liu** |
Department of Physics, Henan Institute of Education, Zhengzhou 450046
|
|
Cite this article: |
Jing-He Wu, Chang-Xin Liu 2016 Chin. Phys. Lett. 33 036202 |
|
|
Abstract Using the newly developed particle swarm optimization algorithm on crystal structural prediction, we predict a new class of boron nitride with stoichiometry of NB$_{2}$ at ambient pressure, which belongs to the tetragonal $I\bar{4}m2$ space group. Then, its structure, elastic properties, electronic structure, and chemical bonding are investigated by first-principles calculations with the density functional theory. The phonon calculation and elastic constants confirm that the predicted NB$_{2}$ is dynamically and mechanically stable, respectively. The large bulk modulus, large shear modulus, large Young's modulus, and small Poisson's ratio show that the $I\bar{4}m2$ NB$_{2}$ should be a new superhard material with a calculated theoretical Vickers hardness value of 66 GPa. Further analysis on density of states and electron localization function demonstrate that the strong B–B and B–N covalent bonds are the main reason for its high hardness in $I\bar{4}m2$ NB$_{2}$.
|
|
Received: 20 December 2015
Published: 31 March 2016
|
|
|
|
|
|
[1] | Veprek S 1999 J. Vac. Sci. Technol. A 17 2401 | [2] | Li Q K, Sun Y, Zhou Y and Zeng F L 2012 Acta Phys. Sin. 61 093104 (in Chinese) | [3] | Li Q K, Sun Y, Zhou Y and Zeng F L 2012 Acta Phys. Sin. 61 043103 (in Chinese) | [4] | Solozhenko V L, Kurahevych O O, Andrault D, Godec Y L and Mezouar M 2009 Phys. Rev. Lett. 102 015506 | [5] | Novikov N V, Dub S N and Mal'nev V I 1983 Sov. J. Superhard Mater. (USRR) 5 16 | [6] | Wentzcovitch R M, Fahy S, Cohen M L and Louie S G 1988 Phys. Rev. B 38 6191 | [7] | Doll K, Schon J C and Jansen M 2008 Phys. Rev. B 78 144110 | [8] | Li Z P and Gao F M 2012 Phys. Chem. Chem. Phys. 14 869 | [9] | Li Y, Hao J, Liu H, Lu S and Tse J S 2015 Phys. Rev. Lett. 115 105502 | [10] | Wang Y C, Lv J and Ma Y M 2010 Phys. Rev. B 82 094116 | [11] | Lv J, Wang Y C, Zhu L and Ma Y M 2012 J. Chem. Phys. 137 084104 | [12] | Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 | [13] | Zhang M, Liu H Y, Li Q, Gao B, Wang Y C, Li H D, Chen C F and Ma Y M 2015 Phys. Rev. Lett. 114 015502 | [14] | Li Q, Wang J Y, Zhang M, Li Q and Ma Y M 2015 RSC Adv. 5 35882 | [15] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | [16] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | [17] | Hill R 1952 Proc. Phys. Soc. A 65 349 | [18] | Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525 | [19] | Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275 | [20] | Chen X Q, Niu H Y, Franchini C, Li D Z and Li Y Y 2011 Phys. Rev. B 84 121405(R) | [21] | Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 | [22] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 | [23] | Sun H, Jhi S H, Roundy D, Cohen M L and Louie S G 2001 Phys. Rev. B 64 094108 | [24] | Li Q, Wang M, Oganov A R, Cui T, Ma Y M and Zou G T 2009 J. Appl. Phys. 105 053514 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|