FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Tunable and Switchable Narrow Bandwidth Semiconductor-Saturable Absorber Mirror Mode-Locked Yb-Doped Fiber Laser Delivering Different Pulse Widths |
Zhao-Kun Wang1,2, Feng Zou1,2, Zi-Wei Wang1,2, Song-Tao Du1**, Jun Zhou1** |
1Shanghai Key Laboratory of Solid State Laser and Application, and Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2Graduate University of the Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Zhao-Kun Wang, Feng Zou, Zi-Wei Wang et al 2016 Chin. Phys. Lett. 33 034202 |
|
|
Abstract The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9 nm and 1032 nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9 nm and 1032 nm. The laser delivers different pulse widths of 7.5 ps for 1030 nm and 20 ps for 1032 nm. The maximum output power for both could reach $\sim$6.5 mW at single pulse operation. The output wavelength could be tuned to about 0.9 nm intervals ranging from 1030.2 nm to 1031.1 nm and from 1032.15 nm to 1033.7 nm with the temperature change of the fiber Bragg grating, respectively.
|
|
Received: 10 November 2015
Published: 31 March 2016
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
|
|
|
[1] | Fried A et al 2008 Appl. Phys. B 92 409 | [2] | Polynkin P, Roussev R, Fejer M M, Peyghambarian N and Moloney J 2007 IEEE Photon. Technol. Lett. 19 1328 | [3] | Whitenett G, Stewart G, Yu H and Culshaw B 2004 J. Lightwave Technol. 22 813 | [4] | Wei K H, Jiang P P, Wu B et al 2015 Chin. Phys. B 24 024217 | [5] | Zhang Z X, Xu Z W and Zhang L 2012 Opt. Express 20 26736 | [6] | Zhang L, Hu J M, Wang J H and Feng Y 2012 Opt. Lett. 37 3828 | [7] | Li X H, Wang Y S, Zhao W, Zhang W, Yang Z, Hu X H, Wang H S, Wang X L, Zhang Y N and Gong Y K 2011 Laser Phys. 21 940 | [8] | Zhu X, Wang C, Liu S, Hu D, Wang J and Zhu C 2011 IEEE Photon. Technol. Lett. 23 956 | [9] | Lin H Q, Guo C Y, Ruan S C, Yang J H, Ouyang D Q, Wu Y M and Wen L 2013 IEEE Photon. J. 5 1501807 | [10] | Zhang Z X, Mou C B, Yan Z J, Wang Y J, Zhou K M and Zhang L 2015 Opt. Express 23 1353 | [11] | Lecourt J B, Duterte C, Narbonneau F, Kinet D, Hernandez Y and Giannone D 2012 Opt. Express 20 918 | [12] | Li X H, Wang Y G, Wang Y S, Hu X H, Zhao W et al 2012 IEEE Photon. J. 4 234 | [13] | Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y, Yang X and Zhu J 2011 Opt. Express 19 1168 | [14] | Zhang H et al 2010 Appl. Phys. Lett. 96 111112 | [15] | Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q and Lin R Y 2014 Opt. Express 22 11417 | [16] | Xiao X S and Hua Y 2015 Chin. Phys. Lett. 32 024203 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|