Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 031301    DOI: 10.1088/0256-307X/33/3/031301
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Chargino Production via $Z^0$-Boson Decay in a Strong Electromagnetic Field
Alexander Kurilin**
Moscow Technological Institute on leave from Moscow State Open Pedagogical University, Moscow 119334, Russia
Cite this article:   
Alexander Kurilin 2016 Chin. Phys. Lett. 33 031301
Download: PDF(537KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the framework of MSSM the probability of $Z^0$-boson decay to charginos in a strong electromagnetic field, $Z^0\rightarrow \chi ^{+} \chi ^{-}$, is analyzed. The method of calculations employs exact solutions of relativistic wave equations for charginos in a crossed electromagnetic field. Analytic expression for the decay width ${\it \Gamma}(Z^{0}\rightarrow \chi ^{+} \chi ^{-})$ is obtained at an arbitrary value of the parameter $\varkappa=e m_Z^{-3}\sqrt{-(F_{\mu\nu}q^\nu)^2}$, which characterizes the external-field strength $F_{\mu\nu}$ and $Z^0$-boson momentum $q^{\nu}$. The process $Z^0\rightarrow \chi ^{+} \chi ^{-}$ is forbidden in a vacuum for the case of relatively heavy charginos: $M_{\chi^{\pm}}>m_Z/2$. However, in an intense electromagnetic background this reaction could take place in the region of superstrong fields ($\varkappa>1$).
Received: 23 November 2015      Published: 31 March 2016
PACS:  13.38.Dg (Decays of Z bosons)  
  13.40.Hq (Electromagnetic decays)  
  14.80.Nb (Neutralinos and charginos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/031301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/031301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alexander Kurilin
[1]Nilles H P 1984 Phys. Rep. 110 1
Haber H E and Kane G L 1985 Phys. Rep. 117 75
Martin S P 1997 arXive:hep-ph/9709356
[2]Witten E 1981 Nucl. Phys. B 188 513
Kaul R K and Majumdar P 1982 Nucl. Phys. B 199 36
[3]Kurilin A V 2004 Yad. Fiz. 67 2116 (in Russian)
Kurilin A V 2004 Phys. At. Nucl. 67 2095
[4]Kurilin A V 2009 Yad. Fiz. 72 1078 (in Russian)
Kurilin A V 2009 Phys. At. Nucl. 72 1034
[5]Kurilin A V 1990 Phys. Lett. B 249 455
Kurilin A V 1994 Int. J. Mod. Phys. A 9 4581
Kurilin A V and Ternov A I 1996 Phys. Lett. B 381 185
[6]Kurilin A V and Ternov A I 2000 Yad. Fiz. 63 1944 (in Russian)
Kurilin A V and Ternov A I 2000 Phys. At. Nucl. 63 1855
Kurilin A V and Ternov A I 1996 Pis'ma Zh. Eksp. Teor. Fiz. 63 305 (in Russian)
Kurilin A V and Ternov A I 1996 JETP Lett. 63 311
Kurilin A V 1994 Yad. Fiz. 57 1129 (in Russian)
Kurilin A V 1994 Phys. At. Nucl. 57 1066
[7]Borisov A V, Vshivtsev A S, Zhukovsky V Ch and Eminov P A 1997 Usp. Fiz. Nauk 167 241 (in Russian)
Borisov A V, Vshivtsev A S, Zhukovsky V Ch and Eminov P A 1997 Phys. Usp. 40 229
[8]Fayet P 1983 Phys. Lett. B 125 178
Fayet P 1983 Phys. Lett. B 133 363
Weinberg S 1983 Phys. Rev. Lett. 50 387
Kalinowski J and Zerwas P M 1997 Phys. Lett. B 400 112
[9]Olive K A et al 2014 Chin. Phys. C 38 090001
[10]Kurilin A V 1999 Nuovo Cimento A 112 977
[11]Piazza A Di, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
Müller S J, Keitel C H and Müller C 2014 Phys. Rev. D 90 094008
[12]Baier V N, Katkov V M and Strakhovenko V M 1998 Electromagnetic Processes at High Energies in Oriented Single Crystals (Singapore: World Scientific)
Related articles from Frontiers Journals
[1] Hong Chen, Rong-Gang Ping. Exclusive ${\it \Omega}_{ccc}^{++}\bar{\it \Omega}_{ccc}^{--}$ Production from $Z^0/\gamma^*$ Decays[J]. Chin. Phys. Lett., 2018, 35(1): 031301
[2] SUN Hao**. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider[J]. Chin. Phys. Lett., 2012, 29(4): 031301
[3] WANG Ya-Bin, LI Xiang-Dong, HAN Jin-Zhong, YANG Bing-Fang, ** . Contribution of the LHT Model to Zc[J]. Chin. Phys. Lett., 2011, 28(10): 031301
Viewed
Full text


Abstract