Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 120501    DOI: 10.1088/0256-307X/33/12/120501
GENERAL |
Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder
Jing-Hui Li**
Faculty of Science, Ningbo University, Ningbo 315211
Cite this article:   
Jing-Hui Li 2016 Chin. Phys. Lett. 33 120501
Download: PDF(448KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effect of the network size (or the elements number) on the collective motion of the mean field for a globally coupled map with disorder. It is shown that, with the increasing network size, the collective motion of the mean field of the globally coupled map can be shrunk periodically. In the absence of disorder or in the presence of disorder while without the coupling, this phenomenon is absent. Our result means that disorder can make the globally coupled map tame itself for certain numbers of network size. In addition, we discuss the possible application of our result to the network for action potential wave block at-a-distance in the heart.
Received: 13 June 2016      Published: 29 December 2016
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Supported by the K. C. Wong Magna Fund of Ningbo University of China.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/120501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/120501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Hui Li
[1]Li J H et al 1998 Phys. Rev. E 58 2838
Li J H 2011 Chaos 21 043115
[2]Kaneko K 1990 Phys. Rev. Lett. 65 1391
Kaneko K 1995 Physica D 86 158
[3]Perez G et al 1993 Physica D 63 341
[4]Shibata T et al 1999 Phys. Rev. Lett. 82 4424
[5]Shibata T et al 1998 Phys. Rev. Lett. 81 4116
[6]Li J H 2004 Physica D 190 129
[7]Restrepoet J G et al 2006 Phys. Rev. Lett. 96 254103
[8]Chen H et al 2008 Physica A 387 1071
[9]Parra-Rojas C, Challenger J D, Fanelli D and McKane A J 2014 Phys. Rev. E 90 032135
[10]Nag M and Poria S 2014 Phys. Scr. 89 095205
[11]Li J H 2007 Physica D 226 209
Radons G 1996 Phys. Rev. Lett. 77 4748
Popescu M N et al 2000 Phys. Rev. Lett. 85 3321
[12]Herger R et al 2007 Phys. Rev. Lett. 98 076102
[13]Garriga A et al 2005 Phys. Rev. E 72 031505
[14]Olsson P 2007 Phys. Rev. Lett. 98 097001
[15]Bakó B et al 2007 Phys. Rev. Lett. 98 075701
[16]Pikovsky A S and Kurths J 1994 Phys. Rev. Lett. 72 1644
Pikovsky A S and Kurths J 1994 Physica D 76 411
[17]Shibata T and Kaneko K 1997 Europhys. Lett. 38 417
Shibata T and Kaneko K 1998 Physica D 124 163
[18]Li J H 2008 Chin. Phys. Lett. 25 413
[19]Li J H and Hanggi P 2001 Phys. Rev. E 64 011106
Liu Zonghua et al 2001 Phys. Rev. E 63 055201
Hu B and Liu Z H 2000 Phys. Rev. E 62 2114
[20]Li J H 2015 Chin. Phys. Lett. 32 050502
[21]Gammaitoni L, H? ggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
Li J H 2002 Phys. Rev. E 66 031104
Li J H 2014 Chin. Phys. Lett. 31 060505
Reenbohn W L and Mangal M C 2015 Phys. Rev. E 91 052151
[22]Doering C R and Gadoua J C 1992 Phys. Rev. Lett. 69 2318
Li J H, Xing D Y, Dong J M and Hu B 1999 Phys. Rev. E 60 1324
Li J H 2008 Europhys. Lett. 82 50006
Szczepaniec K and Dybiec B 2014 J. Stat. Mech. P09022
[23]Fox J J et al 2003 New J. Phys. 5 101.1
[24]Otani N F 2007 Phys. Rev. E 75 021910
[25]Huang L, Lai Y C and Gatenby R A 2008 Phys. Rev. E 78 045102(R)
[26]Martí A C and Masoller C 2004 Physica A 342 344
Related articles from Frontiers Journals
[1] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 120501
[2] Chu-Han Wang, Le Fang. A Closure for Isotropic Turbulence Based on Extended Scale Similarity Theory in Physical Space[J]. Chin. Phys. Lett., 2018, 35(8): 120501
[3] Sheng-Li Zhu, Lu Gan. Specific Emitter Identification Based on Visibility Graph Entropy[J]. Chin. Phys. Lett., 2018, 35(3): 120501
[4] Sheng-Li Zhu, Lu Gan. Chaos Identification Based on Component Reordering and Visibility Graph[J]. Chin. Phys. Lett., 2017, 34(5): 120501
[5] Le Fang, Ming-Wei Ge. Mathematical Constraints in Multiscale Subgrid-Scale Modeling of Nonlinear Systems[J]. Chin. Phys. Lett., 2017, 34(3): 120501
[6] Yan-Jin Wang, Shu-Dao Zhang. Uncertainty Quantification of Numerical Simulation of Flows around a Cylinder Using Non-intrusive Polynomial Chaos[J]. Chin. Phys. Lett., 2016, 33(09): 120501
[7] JI Ying, WANG Ya-Wei. Bursting Behavior in the Piece-Wise Linear Planar Neuron Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2015, 32(4): 120501
[8] MIN Fu-Hong, SHAO Shu-Yi, HUANG Wen-Di, WANG En-Rong. Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System[J]. Chin. Phys. Lett., 2015, 32(03): 120501
[9] Rodrigo A. da Silva, Paulo C. Rech. A Parameter-Space Analysis of the Rikitake System[J]. Chin. Phys. Lett., 2013, 30(12): 120501
[10] WANG Guang-Yi, HE Jie-Ling, YUAN Fang, PENG Cun-Jian. Dynamical Behaviors of a TiO2 Memristor Oscillator[J]. Chin. Phys. Lett., 2013, 30(11): 120501
[11] MIN Fu-Hong . Function Projective Synchronization for Two Gyroscopes under Specific Constraints[J]. Chin. Phys. Lett., 2013, 30(7): 120501
[12] Amanda C. Mathias, Paulo C. Rech. Changes in the Dynamics of a Rössler Oscillator by an External Forcing[J]. Chin. Phys. Lett., 2013, 30(3): 120501
[13] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 120501
[14] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120501
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 120501
Viewed
Full text


Abstract