Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 120502    DOI: 10.1088/0256-307X/33/12/120502
GENERAL |
Interaction of Double Sine-Gordon Solitons with External Potentials: an Analytical Model
S. Nazifkar1**, K. Javidan2, M. Sarbishaei2
1Physics Department, University of Neyshabur, Neyshabur, Iran
2Physics Department, School of Science, Ferdowsi University of Mashhad, Mashhad, Iran
Cite this article:   
S. Nazifkar, K. Javidan, M. Sarbishaei 2016 Chin. Phys. Lett. 33 120502
Download: PDF(417KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interaction of double sine-Gordon solitons with a space dependent potential wall as well as a potential well is investigated by employing an analytical model based on the collective coordinate approach. The potential is added to the model through a suitable nontrivial metric for the background spacetime. The model is able to predict most of the features of the soliton-potential interaction. It is shown that a soliton can pass through a potential barrier if its velocity is larger than a critical velocity which is a function of the initial soliton conditions and also characters of the potential. It is interesting that the solitons of the double sine-Gordon model can be trapped by a potential barrier and oscillate there. This situation is very important in applied physics. The soliton-well system is investigated by using the presented model. Analytical results are also compared with the results of the direct numerical solutions.
Received: 20 August 2016      Published: 29 December 2016
PACS:  05.45.Yv (Solitons)  
  02.70.-c (Computational techniques; simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/120502       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Nazifkar
K. Javidan
M. Sarbishaei
[1]Ishikawa M et al 1984 J. Phys. C 17 5103
[2]Khomeriki R and Leon J 2005 Phys. Rev. E 71 056620
[3]Fiore G 2005 arXiv:math-ph/0512002
[4]Riazi N et al 2002 Phys. Rev. D 66 065003
[5]Yakushevich L V 2006 Nonlinear Physics of DNA (Birlin: Wiley)
[6]Yakushevich L V et al 2002 Phys. Rev. E 66 016614
[7]Cuenda S et al 2006 Physica D 223 214
[8]Timonen J et al 1986 Phys. Rev. Lett. 56 2233
[9]Gogolin A O et al 2004 Bosonization and Strongly Correlated Systems (Cambridge: Cambridge University Press)
[10]Giamarchi T 2004 Quantum Physics in One Dimension (Oxford: Oxford University Press)
[11]Bullough R K et al 1980 Solitons (Berlin: Springer-Verlag)
[12]Blas H 2007 J. High Energy Phys. 0705 055
[13]Burdick S et al 1986 Phys. Rev. B 34 6575
[14]Maki K and Kumer P 1976 Phys. Rev. B 14 118
[15]Shiefman Y and Kumer P 1979 Phys. Scr. 20 435
[16]Hudak O 1983 J. Phys. Chem. 16 2641
[17]M El-Batanouny M et al 1987 Phys. Rev. Lett. 58 2762
[18]Magyari E 1984 Phys. Rev. B 29 7082
[19]Pouget J and Maugin G A 1984 Phys. Rev. B 30 5306
[20]Hatakenaka N et al 2000 Physica B 284-288 563
[21]Emamipour H 2014 Chin. Phys. B 23 057402
[22]Uchiyama T 1976 Phys. Rev. D 14 3520
[23]Duckworth S et al 1976 Phys. Lett. A 57 19
[24]Kivshar Y S et al 1991 Phys. Rev. Lett. 67 1177
[25]Fei Z et al 1992 Phys. Rev. A 46 5214
[26]Al-Alawi Jassem H et al 2007 J. Phys. A 40 11319
[27]Piette B and Zakrzewski W J 2007 J. Phys. A 40 329
[28]Kalbermann G 1999 Phys. Lett. A 252 37
[29]Javidan 2006 J. Phys. A 39 10565
[30]Guner O 2015 Chin. Phys. B 24 100201
[31]Popov C A 2005 Wave Motion 42 309
[32]Riazi N et al 1998 Int. J. Theor. Phys. 37 1081
[33]Wazwaz A M 2006 Phys. Lett. A 350 367
[34]Mussardo G et al 2004 Nucl. Phys. B 687 189
[35]Felsager B 1998 Geometry, Particles and Fields (New York: Springer-Verlag)
[36]Javidan k 2008 Phys. Rev. E 78 046607
[37]Manton N S 1982 Phys. Lett. B 110 54
[38]Lund F 1991 Phys. Lett. A 159 245
[39]Nazifkar S and Javidan K 2010 Braz. J. Phys. 40 102
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 120502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 120502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 120502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 120502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 120502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 120502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 120502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 120502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 120502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 120502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 120502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 120502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 120502
Viewed
Full text


Abstract