Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 117305    DOI: 10.1088/0256-307X/33/11/117305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$
Hua-Ling Yu1,2**, Zhang-Yin Zhai1,2, Xin-Tian Bian1
1School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300
2National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian 2016 Chin. Phys. Lett. 33 117305
Download: PDF(569KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate numerically the integer quantum Hall effect in a two-orbital square lattice. The Hall plateau $\sigma _{\rm H}=2(e^2/h)$ is well defined with the Chern number $C=\pm 2$. With the increasing disorder, both the Hall plateau and the gap of density of states decrease gradually in width, and finally the gap disappears before vanishing of the Hall plateau. Compared with the Hall plateau induced by the external magnetic field, the one in our system is more robust against disorder. We also find that the transition from the Hall plateau to zero Hall conductance becomes sharper by increasing the size of the system.
Received: 03 August 2016      Published: 28 November 2016
PACS:  73.43.Cd (Theory and modeling)  
  73.43.-f (Quantum Hall effects)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK20140450, the Huaian Science and Technology (Industry) Project under Grant Nos HAG2014043 and HAG2014019, and the Youth Foundation of Huaiyin Normal University under Grant No 13HSQNZ03.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/117305       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/117305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hua-Ling Yu
Zhang-Yin Zhai
Xin-Tian Bian
[1]Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2]Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[3]Laughlin R B 1981 Phys. Rev. B 23 5632
[4]Halperin B I 1982 Phys. Rev. B 25 2185
[5]Thouless D J, Kohmoto M, Nightingate M P and den M 1982 Phys. Rev. Lett. 49 405
[6]Abrahams E, Anderson P W, Liccardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
[7]Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 7 287
[8]Wegner F 1989 Nucl. Phys. B 316 663
[9]Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[10]Ando T 1989 Phys. Rev. B 40 5325
[11]Sheng D N and Weng Z Y 1997 Phys. Rev. Lett. 78 318
[12]Hofstadter D R 1976 Phys. Rev. B 14 2239
[13]Dutta P, Maiti S K and Karmakar S N 2012 J. Appl. Phys. 112 044306
[14]Sheng D N and Weng Z Y 1998 Phys. Rev. Lett. 80 580
[15]Sheng D N, Weng Z Y and Wen X G 2001 Phys. Rev. B 64 165317
[16]Sheng D N, Sheng L and Weng Z Y 2006 Phys. Rev. B 73 233406
[17]Wang Y F and Gong C D 2007 Phys. Rev. Lett. 98 096802
[18]Li J, Wang Y F and Gong C D 2011 J. Phys.: Condens. Matter 23 156002
[19]Priest J, Lim S P and Sheng D N 2014 Phys. Rev. B 89 165422
[20]Maiti S K, Dey M and Karmakar S N 2012 Phys. Lett. A 376 1366
[21]Naumis G G 2016 Phys. Lett. A 380 1772
[22]Keil R, Poli C, Heinrich M, Arkinstall J and Weihs G 2016 Phys. Rev. Lett. 116 213901
[23]Mei F, Zhang D W and Zhu S L 2013 Chin. Phys. B 22 116106
[24]Yang Y and Li X L 2015 Chin. Phys. B 24 124302
[25]Zhang Y and Vishwanath A 2013 Phys. Rev. B 87 161113(R)
[26]Huo Y and Bhatt R N 1992 Phys. Rev. Lett. 68 1375
Related articles from Frontiers Journals
[1] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 117305
[2] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 117305
[3] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 117305
[4] LIN Xin, WANG Hai-Long, PAN Hui, XU Huai-Zhe . The Unconventional Transport Properties of Dirac Fermions in Graphyne[J]. Chin. Phys. Lett., 2013, 30(7): 117305
[5] R. I. Eglitis, M. R. Philpott. Computer Modelling of Metal Dissolution in the Presence of Aqueous Electrolyte[J]. Chin. Phys. Lett., 2002, 19(3): 117305
Viewed
Full text


Abstract