Chin. Phys. Lett.  2016, Vol. 33 Issue (11): 110301    DOI: 10.1088/0256-307X/33/11/110301
GENERAL |
Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice
Zheng Zhou1, Hong-Hua Zhong2,3**, Bo Zhu2, Fa-Xin Xiao1**, Ke Zhu1, Jin-Tao Tan4
1Department of Physics, Hunan Institute of Technology, Hengyang 421002
2Department of Physics, Jishou University, Jishou 416000
3School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082
4Department of physics, Hunan University of Technology, Zhuzhou 412007
Cite this article:   
Zheng Zhou, Hong-Hua Zhong, Bo Zhu et al  2016 Chin. Phys. Lett. 33 110301
Download: PDF(2684KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the stability and collision dynamics of dissipative matter-wave solitons formed in a quasi-one-dimensional Bose–Einstein condensate with linear gain and three-body recombination loss perturbed by a weak optical lattice. It is shown that the linear gain can modify the stability of the single dissipative soliton moving in the optical lattice. The collision dynamics of two individual dissipative matter-wave solitons explicitly depend on the linear gain parameter, and they display different dynamical behaviors in both the in-phase and out-of-phase interaction regimes.
Received: 30 June 2016      Published: 28 November 2016
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.Yv (Solitons)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11547125 and 11465008, the Hunan Provincial Natural Science Foundation under Grant Nos 2015JJ4020 and 2015JJ2114, and the Scientific Research Fund of Hunan Provincial Education Department under Grant No 14A118.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/11/110301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zheng Zhou
Hong-Hua Zhong
Bo Zhu
Fa-Xin Xiao
Ke Zhu
Jin-Tao Tan
[1]Skryabin D V and Gorbach A V 2010 Rev. Mod. Phys. 82 1287
[2]Kartashov Y V, Malomed B A and Torner L 2011 Rev. Mod. Phys. 83 247
[3]Karpov M, Guo H, Kordts A, Brasch V, Pfeiffer M H P, Zervas M, Geiselmann M and Kippenberg T J 2016 Phys. Rev. Lett. 116 103902
[4]Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[5]Lee C and Brand J 2006 Europhys. Lett. 73 00321
[6]Chong G S and Hai W H 2007 J. Phys. B 40 211
[7]Song S W, Wang D S, Wang H Q and Liu W M 2012 Phys. Rev. A 85 063617
[8]Xu Y, Zhang Y P and Wu B 2013 Phys. Rev. A 87 013614
[9]Liu Y K and Yang S J 2014 Chin. Phys. B 23 110308
[10]Li Q Y, Wang S J and Li Z D 2014 Chin. Phys. B 23 060310
[11]Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[12]Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[13]Weiss C and Castin Y 2009 Phys. Rev. Lett. 102 010403
[14]Billam T P, Cornish S L and Gardiner S A 2011 Phys. Rev. A 83 041602(R)
[15]Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918
[16]Yan J R, Zhou J and Ao S M 2012 Chin. Phys. Lett. 29 050302
[17]Wu Z K, Zhang Y Z, Hu Y, Wen F, Zhang Y Q and Zhang Y P 2014 Chin. Phys. Lett. 31 090502
[18]Bland T, Edmonds M J, Proukakis N P, Martin A M, O'Dell D H J and Parker N G 2015 Phys. Rev. A 92 063601
[19]Baizakov B B, Al-Marzoug S M and Bahlouli H 2015 Phys. Rev. A 92 033605
[20]Chen W, Shen M, Kong Q, Shi J, Wang Q and Krolikowski W 2014 Opt. Lett. 39 1764
[21]Shen M, Gao J and Ge L 2015 Sci. Rep. 5 9814
[22]Niang A, Amrani F, Salhi M, Leblond H and Sanchez F 2015 Phys. Rev. A 92 033831
[23]Li M and Xu T 2015 Phys. Rev. E 91 033202
[24]Bludov Y V, Hang C, Huang G and Konotop V V 2014 Opt. Lett. 39 3382
[25]Kagan Y, Muryshev A E and Shlyapnikov G V 1998 Phys. Rev. Lett. 81 933
[26]Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, N? gerl H C and Grimm R 2006 Nature 440 315
[27]Shotan Z, Machtey O, Kokkelmans S and Khaykovich L 2014 Phys. Rev. Lett. 113 053202
[28]Maier T, Kadau H, Schmitt M, Wenzel M, Ferrier-Barbut I, Pfau T, Frisch A, Baier S, Aikawa K, Chomaz L, Mark M J, Ferlaino F, Makrides C, Tiesinga E, Petrov A and Kotochigova S 2015 Phys. Rev. X 5 041029
[29]Adhikari S K 2006 Laser Phys. Lett. 3 553
[30]Wang H C, Ling D X and He Y J 2015 Chin. Phys. Lett. 32 074203
[31]Yan J R, Tang Y and Zhou G G 1998 Phys. Rev. E 58 1064
[32]Zhou Z, Hai W, Xie Q and Tan J T 2013 New J. Phys. 15 123020
[33]Poletti D, Alexander T J, Ostrovskaya E A, Li B W and Kivshar Y S 2008 Phys. Rev. Lett. 101 150403
[34]Scharf R and Bishop A R 1992 Phys. Rev. A 46 R2793
[35]Zhou Z, Hai W, Deng Y and Xie Q 2012 Chaos Solitons Fractals 45 1423
[36]Helm J L, Billam T P and Gardiner S A 2012 Phys. Rev. A 85 053621
[37]Sun Z, Kevrekidis P G and Krü ger P 2014 Phys. Rev. A 90 063612
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 110301
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 110301
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 110301
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 110301
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 110301
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 110301
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 110301
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 110301
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 110301
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 110301
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 110301
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 110301
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 110301
[14] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 110301
[15] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 110301
Viewed
Full text


Abstract