Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 108901    DOI: 10.1088/0256-307X/33/10/108901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Network Aggregation Process in Multilayer Air Transportation Networks
Jian Jiang1**, Rui Zhang1, Long Guo2, Wei Li3, Xu Cai3
1College of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430200
2School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074
3Complexity Science Center, Institute of Particle Physics, Central China Normal University, Wuhan 430079
Cite this article:   
Jian Jiang, Rui Zhang, Long Guo et al  2016 Chin. Phys. Lett. 33 108901
Download: PDF(480KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
Received: 12 April 2016      Published: 27 October 2016
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.65.-s (Social and economic systems)  
  89.75.Da (Systems obeying scaling laws)  
  89.40.Dd (Air transporation)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11405118, 11401448 and 11301403.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/108901       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/108901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Jiang
Rui Zhang
Long Guo
Wei Li
Xu Cai
[1]Kivela M, Arenas A, Barthelemy M et al 2014 J. Complex Netw. 2 203
[2]Domenico M D, Ribalta A S, Cozzo E et al 2013 Phys. Rev. X 3 041022
[3]Gómez S, Díaz-Guilera A, Gómez-Garde?es J et al 2013 Phys. Rev. Lett. 110 028701
[4]Battiston F, Nicosia V and Latora V 2014 Phys. Rev. E 89 032804
[5]Domenico M D, RibaltaA. S, Gomez S et al 2014 Proc. Natl. Acad. Sci. USA 111 8351
[6]Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[7]Lewis K, Kaufman J, Gonzalez M et al 2008 Soc. Networks 30 330
[8]Sola L, Romance M, Criado R et al 2013 Chaos 23 033131
[9]Cozzo E, Kivela M, Domenico M D et al 2015 New J. Phys. 17 073029
[10]Domenico M D, Ribalta A S, Omodei E et al 2015 Nat. Commun. 6 6868
[11]Magnani M, Micenkova B and Rossi L 2013 arXiv:1303.4986
[12]Nicosia V and Latora V 2015 Phys. Rev. E 92 032805
[13]Criado R, Flores J, García A D A et al 2012 Int. J. Comput. Math. 89 291
[14]Barigozzi M, Fagiolo G and Garlaschelli D 2010 Phys. Rev. E 81 046104
[15]Barigozzi M, Fagiolo G, Mangioni G et al 2011 Physica A 390 2051
[16]Cardillo A, Gardenes J G, Zanin M et al 2013 Sci. Rep. 3 1344
[17]Cardillo A, Zanin M, Gardenes J G et al 2013 Eur. Phys. J. Spec. Top. 215 23
[18]http://flights.ctrip.com/domestic/MyToolBox/Default.aspx
[19]Chi L P, Wang R, Su H et al 2003 Chin. Phys. Lett. 20 1393
[20]Li W and Cai X 2004 Phys. Rev. E 69 046106
[21]Han D D, Qian J H and Liu J Q 2007 arXiv:physics/0703193v2
[22]Guimera R, Mossa S, Turtschi A et al 2005 Proc. Natl. Acad. Sci. USA 102 7794
[23]Meloni S, Perra N, Arenas A et al 2011 Sci. Rep. 1 62
[24]Barrat A, Barthelemy M, Satorras P R et al 2004 Proc. Natl. Acad. Sci. USA 101 3747
[25]Watts D J and Strogatz S H 1998 Nature 393 440
[26]Newman M E J 2002 Phys. Rev. Lett. 89 208701
[27]Song C, Havlin S and Makse H A 2005 Nature 433 392
[28]Gutman I 1978 Ber. Math. Statist. Sekt. Forsch. Graz. 103 1
[29]Liu H K and Zhou T 2007 Acta Phys. Sin. 56 106 (in Chinese)
[30]Zhang J, Cao X B, Du W B et al 2010 Physica A 389 3922
[31]Song C, Havlin S and Makse H A 2006 Nat. Phys. 2 275
[32]Gallos L K, Song C and Makse H A 2007 Physica A 386 686
[33]Kawasaki F and Yakubo K 2010 Phys. Rev. E 82 036113
[34]Shao J, Buldyrev S V, Cohen R et al 2008 Europhys. Lett. 84 48004
[35]Guo L and Cai X 2009 Chin. Phys. Lett. 26 088901
[36]Betten A, Kohnert A, Laue R et al 2001 Algebraic Combinatorics and Applications (Berlin: Springer-Verlag) p 196
[37]Gutman I 1977 Theor. Chim. Acta 45 79
[38]Li W, Gu J, Liu S et al 2014 arXiv:1403.7844v4
[39]Domenico M D, Nicosia V, Arenas A et al 2015 Nat. Commun. 6 6864
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 108901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 108901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 108901
[4] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 108901
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 108901
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 108901
[7] Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han, Jun-Zhong Yang. Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy[J]. Chin. Phys. Lett., 2017, 34(2): 108901
[8] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 108901
[9] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 108901
[10] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 108901
[11] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 108901
[12] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 108901
[13] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 108901
[14] DU Peng, XU Chen, ZHANG Wen. Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game[J]. Chin. Phys. Lett., 2015, 32(5): 108901
[15] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 108901
Viewed
Full text


Abstract