Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 108102    DOI: 10.1088/0256-307X/33/10/108102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors
Yu-Cong Liu1,4, Jia-Dong Chen1,3, Hui-Yong Deng1**, Gu-Jin Hu1, Xiao-Shuang Chen1, Ning Dai1,2**
1National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
2Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou 213164
3Changzhou Institute of Optoelectronic Technology, Changzhou 213164
4University of Chinese Academy of Science, Beijing 100049
Cite this article:   
Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng et al  2016 Chin. Phys. Lett. 33 108102
Download: PDF(1616KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently, great efforts have been made in the fabrication of arbitrary warped devices to satisfy the requirement of wearable and lightweight electronic products. Direct growth of high crystalline quality films on flexible substrates is the most desirable method to fabricate flexible devices owing to the advantage of simple and compatible preparation technology with current semiconductor devices, while it is a very challenging work, and usually amorphous, polycrystalline or discontinuous single crystalline films are achieved. Here we demonstrate the direct growth of high-quality Bi$_{2}$Te$_{3}$ single crystalline films on flexible polyimide substrates by the modified hot wall epitaxy technique. Experimental results reveal that adjacent crystallites are coherently coalesced to form a continuous film, although amounts of disoriented crystallites are generated due to fast growth rate. By inserting a quartz filter into the growth tube, the number density of disoriented crystallites is effectively reduced owing to the improved spiral interaction. Furthermore, flexible Bi$_{2}$Te$_{3}$ photoconductors are fabricated and exhibit strong near-infrared photoconductive response under different degrees of bending, which also confirms the obtained flexible films suitable for electronic applications.
Received: 25 May 2016      Published: 27 October 2016
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.07.Bc (Nanocrystalline materials)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  73.50.Pz (Photoconduction and photovoltaic effects)  
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB619200, the National Natural Science Foundation of China under Grant Nos 61290304, 11074265 and 11174307, the Natural Science Foundation of Shanghai under Grant No 16ZR1441200, and the Frontier Science Research Project (Key Programs) of Chinese Academy of Sciences under Grant No QYZDJ-SSW-SLH018.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/108102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/108102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Cong Liu
Jia-Dong Chen
Hui-Yong Deng
Gu-Jin Hu
Xiao-Shuang Chen
Ning Dai
[1]Cao Q, Kim H S, Pimparkar N, Kulkarni J P, Wang C, Shim M et al 2008 Nature 454 495
[2]Crabb R L and Treble F C 1967 Nature 213 1223
[3]Lee K J, Motala M J, Meitl M A, Childs W R, Menard E, Shim A K et al 2005 Adv. Mater. 17 2332
[4]Sun Y, Kumar V, Adesida I and Rogers J 2006 Adv. Mater. 18 2857
[5]Bai Y H, Wang X, Mu L P and Xu X H 2016 Chin. Phys. Lett. 33 087501
[6]Zhang Y H, Karthikeyan S and Zhang J 2016 Chin. Phys. Lett. 33 066201
[7]Salleo A and Wong W S 2009 Flexible Electronics: Materials and Applications (New York: Springer)
[8]Dutta P, Rathi M, Zheng N and Gao Y 2014 Appl. Phys. Lett. 105 92104
[9]Ferhat M, Tedenac J C and Nagao J 2000 J. Cryst. Growth 218 250
[10]Yamashita O, Tomiyoshi S and Makita K 2003 J. Appl. Phys. 93 368
[11]Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K et al 2009 Science 325 178
[12]Goncalves L M, Alpuim P, Min G, Rowe D M, Couto C and Correia J H 2008 Vacuum 82 1499
[13]Sathyamoorthy R, Dheepa J and Subbarayan A 2005 J. Cryst. Growth 281 563
[14]Liu Y, Weinert M and Li L 2012 Phys. Rev. Lett. 108 115501
[15]Hao G L, Qi X, Fan Y, Xue L, Peng X, Wei X et al 2013 Appl. Phys. Lett. 102 13105
[16]Guo J H, Liu Y C, Deng H Y, Hu G J, Li X N and Yu G L 2014 Nano 09 (6) 90
[17]Zhang Y, Hu L P, Zhu T J, Xie J and Zhao X B 2013 Cryst. Growth Des. 13 645
[18]Greenaway D L and Harbeke G 1965 J. Phys. Chem. Solids 26 1585
[19]Kioupakis E, Tiago M L and Louie S G 2010 Phys. Rev. B 82 245203
Related articles from Frontiers Journals
[1] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 108102
[2] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 108102
[3] Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao. Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(10): 108102
[4] Ru-Dai Quan, Jin-Cheng Zhang, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ya-Chao Zhang, Ze-Yang Ren, Yue Hao. Fabrication of GaN-Based Heterostructures with an InAlGaN/AlGaN Composite Barrier[J]. Chin. Phys. Lett., 2016, 33(08): 108102
[5] Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao. Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(04): 108102
[6] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 108102
[7] ZHANG Pin-Liang, GONG Zi-Zheng, JI Guang-Fu, WANG Qing-Song, SONG Zhen-Fei, CAO Yan, WANG Xiang. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa[J]. Chin. Phys. Lett., 2013, 30(6): 108102
[8] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 108102
[9] JIANG Hong-Xiang, and ZHAO Jiu-Zhou. Effect Mechanism of a Direct Current on the Solidification of Immiscible Alloys[J]. Chin. Phys. Lett., 2012, 29(8): 108102
[10] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 108102
[11] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 108102
[12] ZHAI Feng-Xiao, ZUO Fang-Yuan, HUANG Huan, WANG Yang, LAI Tian-Shu, WU Yi-Qun, GAN Fu-Xi. Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 108102
[13] ZHU Zun-Lue, FU Hong-Zhi, SUN Jin-Feng, LIU Yu-Fang, SHI De-Heng, XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide[J]. Chin. Phys. Lett., 2009, 26(8): 108102
[14] ZHANG Li, HE Qing, JIANG Wei-Long, LI Chang-Jian, SUN Yun. Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition[J]. Chin. Phys. Lett., 2009, 26(2): 108102
[15] FAN Zhen-Jun, PAN Feng, ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt[J]. Chin. Phys. Lett., 2009, 26(2): 108102
Viewed
Full text


Abstract