Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 108101    DOI: 10.1088/0256-307X/33/10/108101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Band Edge Emission Improvement by Energy Transfer in Hybrid III-Nitride/Organic Semiconductor Nanostructure
Fu-Long Jiang1, Ya-Ying Liu1, Yang-Yang Li1, Peng Chen1,2**, Bin Liu1, Zi-Li Xie1, Xiang-Qian Xiu1, Xue-Mei Hua1, Ping Han1, Yi Shi1, Rong Zhang1, You-Dou Zheng1
1Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009
Cite this article:   
Fu-Long Jiang, Ya-Ying Liu, Yang-Yang Li et al  2016 Chin. Phys. Lett. 33 108101
Download: PDF(985KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GaN nanorods are fabricated using inductively coupled plasma etching with Ni nano-island masks. The poly [2-methoxy-5-(2-ethyl)hexoxy-1,4-phenylenevinylene] (MEH-PPV)/GaN-nanorod hybrid structure is fabricated by depositing the MEH-PPV film on the GaN nanorods by using the spin-coating process. In the hybrid structure, the spatial separation is minimized to achieve high-efficiency non-radiative resonant energy transfer. Optical properties of a novel device consisting of MEH-PPV/GaN-nanorod hybrid structure is studied by analyzing photoluminescence (PL) spectra. Compared with the pure GaN nanorods, the PL intensity of the band edge emission of GaN in the MEH-PPV/GaN-nanorods is enhanced as much as three times, and the intensity of the yellow band is suppressed slightly. The obtained results are analyzed by energy transfer between the GaN nanorods and the MEH-PPV. An energy transfer model is proposed to explain the phenomenon.
Received: 19 April 2016      Published: 27 October 2016
PACS:  81.05.Ea (III-V semiconductors)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
  78.55.Cr (III-V semiconductors)  
Fund: Supported by the National Key Technology Research and Development Program under Grant No 2016YFB0400100, the National Basic Research Program of China under Grant No 2012CB619304, the High-Technology Research and Development Program of China under Grant Nos 2014AA032605 and 2015AA033305, the National Natural Science Foundation of China under Grant Nos 61274003, 61422401, 51461135002 and 61334009, the Key Technology Research of Jiangsu Province under Grant No BE2015111, the Solid State Lighting and Energy-Saving Electronics Collaborative Innovation Center, and the Research Funds from NJU-Yangzhou Institute of Opto-electronics.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/108101       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/108101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fu-Long Jiang
Ya-Ying Liu
Yang-Yang Li
Peng Chen
Bin Liu
Zi-Li Xie
Xiang-Qian Xiu
Xue-Mei Hua
Ping Han
Yi Shi
Rong Zhang
You-Dou Zheng
[1]Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[2]Cho J, Schubert E F and Kim J K 2013 Laser Photon. Rev. 7 408
[3]Yu Z G, Chen P, Yang G F, Liu B, Xie Z L, Xiu X Q, Wu Z L, Xu F, Xu Z, Hua X M, Han P, Shi Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 078501
[4]Wang T, Ranalli F, Parbrook P J, Airey R, Bai J, Rattlidge R and Hill G 2005 Appl. Phys. Lett. 86 103103
[5]Li Q, Westlake K R, Crawford M H, Lee S R, Koleske D D, Figiel J J, Cross K C, Fathololoumi S, Mi Z and Wang G T 2011 Opt. Express 19 25528
[6]Kuo M L, Lee Y J, Shen T C and Lin S Y 2009 Opt. Lett. 34 2078
[7]Lampert Z E, Papanikolas J M and Reynolds C L 2013 Appl. Phys. Lett. 102 033303
[8]Lutich A A, Jiang G, Susha A S, Rogach A L, Stefani F D and Feldmann J 2009 Nano Lett. 9 2636
[9]Breeze A J, Schlesinger Z, Carter S A and Brock P J 2001 Phys. Rev. B 64 125205
[10]Chang C Y, Tsao F C, Pan C J, Chi G C, Wang H T, Chen J J, Ren F, Norton D P, Pearton S J, Chen K H and Chen L C 2006 Appl. Phys. Lett. 88 111913
[11]Chang T W F, Musikhin S, Bakueva L, Levina L, Hines M A, Cyr P W and Sargent E H 2004 Appl. Phys. Lett. 84 4295
[12]Wang D W, Zhao S L, Xu Z, Kong C and Gong W 2011 Org. Electron. 12 92
[13]Musa I, Massuyeau F, Faulques E and Nguyen T P 2012 Synth. Met. 162 1756
[14]Soylu M 2012 Opt. Mater. 34 878
[15]Yu Z G, Chen P, Yang G F, Liu B, Xie Z L, Xiu X Q, Wu Z L, Xu F, Xu Z, Hua X M, Han P, Shi Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 098502
[16]Yang G, Guo Y, Zhu H, Yan D, Li G, Gao S and Dong K 2013 Appl. Surf. Sci. 285 772
[17]Tekin E, Holder E, Kozodaev D and Schubert U S 2007 Adv. Funct. Mater. 17 277
[18]Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301
[19]Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[20]Nguyen T Q, Kwong R C, Thompson M E and Schwartz B J 2000 Appl. Phys. Lett. 76 2454
[21]Nguyen T Q, Martini I B, Liu J and Schwartz B J 2000 J. Phys. Chem. B 104 237
[22]Shi Y, Liu J and Yang Y 2000 J. Appl. Phys. 87 4254
[23]Nguyen T Q, Doan V and Schwartz B J 1999 J. Chem. Phys. 110 4068
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 108101
[2] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 108101
[3] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 108101
[4] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 108101
[5] Meng-Han Liu, Peng Chen, Zi-Li Xie, Xiang-Qian Xiu, Dun-Jun Chen, Bin Liu, Ping Han, Yi Shi, Rong Zhang, You-Dou Zheng, Kai Cheng, Li-Yang Zhang. Approach to Single-Mode Dominated Resonant Emission in GaN-Based Square Microdisks on Si[J]. Chin. Phys. Lett., 2020, 37(5): 108101
[6] Shen Yan, Xiao-Tao Hu, Jun-Hui Die, Cai-Wei Wang, Wei Hu, Wen-Liang Wang, Zi-Guang Ma, Zhen Deng, Chun-Hua Du, Lu Wang, Hai-Qiang Jia, Wen-Xin Wang, Yang Jiang, Guoqiang Li, Hong Chen. Surface Morphology Improvement of Non-Polar a-Plane GaN Using a Low-Temperature GaN Insertion Layer[J]. Chin. Phys. Lett., 2020, 37(3): 108101
[7] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 108101
[8] Shu-Zhe Mei, Quan Wang, Mei-Lan Hao, Jian-Kai Xu, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Xiao-Liang Wang, Feng-Qi Liu, Xian-Gang Xu, Zhan-Guo Wang. Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling[J]. Chin. Phys. Lett., 2018, 35(9): 108101
[9] Bing-zhen Chen, Yang Zhang, Qing Wang, Zhi-yong Wang. Photoelectric Property Improvement of 1.0-eV GaInNAs and Applications in Lattice-Matched Five-Junction Solar Cells[J]. Chin. Phys. Lett., 2018, 35(7): 108101
[10] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 108101
[11] De-Sheng Zhao, Ran Liu, Kai Fu, Guo-Hao Yu, Yong Cai, Hong-Juan Huang, Yi-Qun Wang, Run-Guang Sun, Bao-Shun Zhang. An Al$_{0.25}$Ga$_{0.75}$N/GaN Lateral Field Emission Device with a Nano Void Channel[J]. Chin. Phys. Lett., 2018, 35(3): 108101
[12] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 108101
[13] Bo-Ting Liu, Ping Ma, Xi-Lin Li, Jun-Xi Wang, Jin-Min Li. Influence of Al Preflow Time on Surface Morphology and Quality of AlN and GaN on Si (111) Grown by MOCVD[J]. Chin. Phys. Lett., 2017, 34(5): 108101
[14] Bo-Ting Liu, Shi-Kuan Guo, Ping Ma, Jun-Xi Wang, Jin-Min Li. High-Quality and Strain-Relaxation GaN Epilayer Grown on SiC Substrates Using AlN Buffer and AlGaN Interlayer[J]. Chin. Phys. Lett., 2017, 34(4): 108101
[15] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 108101
Viewed
Full text


Abstract