Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 107804    DOI: 10.1088/0256-307X/33/10/107804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of MgO Thickness and Roughness on Perpendicular Magnetic Anisotropy in MgO/CoFeB/Ta Multilayers
Yi Liu1, Tao Yu1, Zheng-Yong Zhu2, Hui-Cai Zhong3, Kai-Gui Zhu1,4**
1School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
2Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
3Integrated Circuit Advanced Process Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
4Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191
Cite this article:   
Yi Liu, Tao Yu, Zheng-Yong Zhu et al  2016 Chin. Phys. Lett. 33 107804
Download: PDF(596KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2–4 nm with the increase of MgO thickness from 1–10 nm. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.
Received: 15 July 2016      Published: 27 October 2016
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.70.Rf (Surface magnetism)  
  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
Fund: Supported by the National Basic Research Program of China under Grant No 2011CB921804, and the Beijing Key Subject Foundation of Condensed Matter Physics under Grant No 0114023.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/107804       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/107804
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi Liu
Tao Yu
Zheng-Yong Zhu
Hui-Cai Zhong
Kai-Gui Zhu
[1]Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[2]Yakushiji K, Saruya T, Kubota H, Fukushima A, Nagahama T, Yuasa S and Ando K 2010 Appl. Phys. Lett. 97 232508
[3]Law R, Tan E L, Sbiaa R, Liew T and Chong T C 2009 Appl. Phys. Lett. 94 062516
[4]Sbiaa R, Lua S, Law R, Meng H, Lye R and Tan H K 2011 J. Appl. Phys. 109 07C707
[5]Yakata S, Kubota H, Suzuki Y, Yakushiji K, Fukushima A, Yuasa S and Ando K 2009 J. Appl. Phys. 105 07D131
[6]Endo M, Kanai S, Ikeda S, Matsukura F and Ohno H 2010 Appl. Phys. Lett. 96 212503
[7]Yamanouchi M, Koizumi R, Ikeda S, Sato H, Mizunuma K, Miura K, Gan H D, Matsukura F and Ohno H 2011 J. Appl. Phys. 109 07C712
[8]Sato H, Yamanouchi M, Miura K, Ikeda S, Gan H D, Mizunuma K Koizumi R, Matsukura F and Ohno H 2011 Appl. Phys. Lett. 99 042501
[9]Natarajarathinam A, Tadisina Z R, Mewes T, Watts S, Chen E and Gupta S 2012 J. Appl. Phys. 112 053909
[10]Liu T, Zhang Y, Cai J W and Pan H Y 2014 Sci. Rep. 4 5895
[11]Wang D S, Lai S Y, Lin T Y, Chien C W, Ellsworth D, Wang L W, Liao J W, Lu L, Wang Y H, Wu M and Lai C H 2014 Appl. Phys. Lett. 104 142402
[12]Cheng T I, Cheng C W and Chern G 2012 J. Appl. Phys. 112 033910
[13]Lee D S, Chang H T, Cheng C W and Cher G 2014 IEEE Trans. Magn. 50 7
[14]Oh Y W, Lee K D, Jeong J R and Park B G 2014 J. Appl. Phys. 115 17C724
[15]Cui B, Song C, Wang G Y, Wang Y Y, Zeng F and Pan F 2013 J. Alloys Compd. 559 112
[16]Liu T, Cai J W and Sun L 2012 AIP Adv. 2 032151
[17]Khoo K H, Wu G, Jhon M H, Tran M, Ernult F, Eason K, Choi H J and Gan C K 2013 Phys. Rev. B 87 174403
[18]Yang H X, Chshiev M, Dieny B, Lee J H, Manchon A and Shin K H 2011 Phys. Rev. B 84 054401
[19]Lee K, Sapan J J, Kang S H and Fullerton E E 2011 J. Appl. Phys. 109 123910
[20]Zhu T, Zhang Q and Yu R 2015 IEEE Magn. Conf. (INTERMAG) 1
[21]Jang S Y, Lim S H and Lee S R 2010 J. Appl. Phys. 107 09C707
[22]Meng H, Lum W H, Sbiaa R, Lua S Y H and Tan H K 2011 J. Appl. Phys. 110 033904
[23]Cheng C W, Feng W, Chern G, Lee C M and Wu T 2011 J. Appl. Phys. 110 033916
[24]Shirahata Y, Wada E, Itoh M and Taniyama T 2014 Appl. Phys. Lett. 104 032404
[25]Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H Tsunoda M, Matsukura F and Ohno H 2008 Appl. Phys. Lett. 93 082508
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 107804
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 107804
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 107804
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 107804
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 107804
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 107804
[7] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 107804
[8] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 107804
[9] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 107804
[10] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 107804
[11] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 107804
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 107804
[13] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 107804
[14] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 107804
[15] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 107804
Viewed
Full text


Abstract