Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 107803    DOI: 10.1088/0256-307X/33/10/107803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Durability of Ultra-Thin Silver Films and Silver–Gold Alloy Films under UV Irradiation
Ming Zhou1**, Yuan Cai1, Yao-Peng Li1, Ding-Quan Liu1,2
1Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
2School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031
Cite this article:   
Ming Zhou, Yuan Cai, Yao-Peng Li et al  2016 Chin. Phys. Lett. 33 107803
Download: PDF(1478KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Silver films (Ag) and silver–gold films (Ag–Au) with thickness $\sim$15 nm are coated on Bk7 glasses through thermal evaporation. After doping gold of 5.2%, the grain size of the Ag film reduces from 13.6 nm to 9.1 nm, also the surface roughness decreases from 1.45 nm to 0.94 nm. A UV lamp is used as the irradiation light source to accelerate the corrosion process in the atmosphere. After 17 h irradiation, the pure silver film surface turns dark, and the transmittances reduce from 350 nm to 500 nm, while the Ag–Au film degrades much less, almost negligibly after UV radiation. Additional x-ray photoelectron spectroscopy and atomic force micrographs data are provided to show atomic content of films and their surface morphologies. It is suggested that small grain size and high packing density of alloy film prevent reaction of silver with oxygen in the atmosphere, which leads to high stability of the Ag–Au film.
Received: 23 May 2016      Published: 27 October 2016
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61308070.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/107803       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/107803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming Zhou
Yuan Cai
Yao-Peng Li
Ding-Quan Liu
[1]Leftheriotis G, Yianoulis P and Patrikios D 1997 Thin Solid Films 306 92
[2]Song D Y, Sprague R W, Macleod H A and Jacobson M R 1985 Appl. Opt. 24 1164
[3]Li H, Sheng C X and Chen Q 2012 Chin. Phys. Lett. 29 054201
[4]Zhang Z, Liu Q and Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese)
[5]Manickam G, Gandhiraman R, Vijayaraghavan R K, Kerr L, Doyle C, Williams D E and Daniels S 2012 Analyst 137 5265
[6]Zhou M, Li Y P, Zhou S and Liu D Q 2015 Chin. Phys. Lett. 32 077802
[7]Frey T and K?gel M 2003 Surf. Coat. Technol. 174 902
[8]Paussa L, Guzman L, Marin E, Isomaki N and Fedrizzi L 2011 Surf. Coat. Technol. 206 976
[9]Kim H C and Alford T L 2003 J. Appl. Phys. 94 5393
[10]Song J T, Li H Y, Li J, Wang S Y and Zhou S M 2002 Appl. Opt. 41 5413
[11]Yang G, Fu X J and Zhou J 2013 J. Opt. Soc. Am. B 30 282
[12]Bussjager R J and Macleod H A 1996 Appl. Opt. 35 5044
[13]Davitz D 2006 US Patent 7128871
[14]Suoninen E, Here H and Minni E 1985 J. Biomed. Mater. Res. 19 917
[15]Keuler J N, Lorenzen L, Sanderson R D, Prozesky V and Przybylowicz W J 1999 Nucl. Instrum. Methods Phys. Res. Sect. B 158 678
[16]Randin J P, Ramoni P and Renaud J P 1992 Werkstoffe Korros. 43 115
[17]Kono W and Nielsen J P 1988 US Patent 4775511
[18]Wu Q J, Wu F, Sun L B, Hu X L, Ye M, Xu Y, Shi B, Xie H, Xia J, Jiang J Z and Zhang D X 2014 Acta Phys. Sin. 63 207801 (in Chinese)
[19]Sun X L, Hong R J, Hou H H, Fan Z X and Shao J D 2007 Thin Solid Films 515 6962
[20]Singh I, Sabita M P and Altekar V A 1983 Anti-Corros. Method 30 4
[21]Pe?a-Rodríguez O, Caro M, Rivera A, Olivares J, Perlado J M and Caro A 2014 Opt. Mater. Express 4 403
[22]Fujiwara H 2007 Spectroscopic Ellipsometry Principles and Applications (England: John Wiley & Sons)
[23]Oates T W H, Ryves L and Bilek M M M 2008 Opt. Express 16 2302
[24]Gao X Y, Wang S Y, Li J, Zheng Y X, Zhang R J, Zhou P, Yang Y M and Chen L Y 2004 Thin Solid Films 455 438
[25]Kibis L S, Avdeev V I, Koscheev S V and Boronin A I 2010 Surf. Sci. 604 1185
[26]Chen X, Zheng Z F, Ke X B, Jaatinen E, Xie T F, Wang D J, Guo C, Zhao J C and Zhu H Y 2010 Green Chem. 12 414
Related articles from Frontiers Journals
[1] Bing Suo, Xiao Zhang, Xinyu Jiang, Feng Yan, Zhengzhi Luo, and Yujin Chen. Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2022, 39(4): 107803
[2] Guanying Xing, Weixian Zhao, Run Hu, and Xiaobing Luo. Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities[J]. Chin. Phys. Lett., 2021, 38(12): 107803
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 107803
[4] Xin Zhu, Feng Yan, Chunyan Li, Lihong Qi, Haoran Yuan, Yanfeng Liu, Chunling Zhu, and Yujin Chen. Nitrogen and Boron Co-Doped Carbon Nanotubes Embedded with Nickel Nanoparticles as Highly Efficient Electromagnetic Wave Absorbing Materials[J]. Chin. Phys. Lett., 2021, 38(1): 107803
[5] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 107803
[6] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 107803
[7] De-Ting Wang, Xian-Chao Wang, Xiao Zhang, Hao-Ran Yuan, Yu-Jin Chen. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption[J]. Chin. Phys. Lett., 2020, 37(4): 107803
[8] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 107803
[9] Ju-Geng Li, Sen-Miao Yang, Xin Chen, Nai-Feng Zhuang, Qi-Biao Zhu, An-Hua Wu, Xian Lin, Guo-Hong Ma, Zuan-Ming Jin, Jian-Quan Yao. Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb$_{3}$Sc$_{2}$Al$_{3}$O$_{12}$ Crystal Investigated by Terahertz Time-Domain Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(4): 107803
[10] Li-Jun Yang, Yan Li. Pascal Realization by Comb-Spectral-Interferometry Based Refractometer[J]. Chin. Phys. Lett., 2018, 35(10): 107803
[11] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 107803
[12] Lan-Qing Zhou, Yan-Bang Zhang, Teng-Fei Yan, Ying Li, Guo-Zhi Jia, Huai-Zhe Xu, Xin-Hui Zhang. Third-Order Nonlinear Optical Response near the Plasmon Resonance Band of Cu$_{2-x}$Se Nanocrystals[J]. Chin. Phys. Lett., 2017, 34(1): 107803
[13] Xiao-Wei Han, Lei Hou, Lei Yang, Zhi-Quan Wang, Meng-Meng Zhao, Wei Shi. Optical-Electrical Characteristics and Carrier Dynamics of Semi-Insulation GaAs by Terahertz Spectroscopic Technique[J]. Chin. Phys. Lett., 2016, 33(12): 107803
[14] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 107803
[15] Meng Zhao, Chun-Hua Xu, Wei-Jie Hu, Wen-Jun Wang, Li-Wei Guo, Xiao-Long Chen. Observation of Two-Photon Absorption and Nonlinear Refraction in AlN[J]. Chin. Phys. Lett., 2016, 33(10): 107803
Viewed
Full text


Abstract