CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS |
Ling-Yan Lin1,2, Yu Qiu1,2**, Yu Zhang2, Hao Zhang2 |
1Institute of Advanced Photovoltaics, Fujian Jiangxia University, Fuzhou 350108 2College of Electronic Information Science, Fujian Jiangxia University, Fuzhou 350108
|
|
Cite this article: |
Ling-Yan Lin, Yu Qiu, Yu Zhang et al 2016 Chin. Phys. Lett. 33 107801 |
|
|
Abstract The Cu$_{2}$ZnSnS$_{4}$ (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation software analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO$_{1-x}$S$_{x}$ buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio $x$, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from $-$0.23 eV to 1.06 eV if the full range of the ratio is considered. The optimal CBO of 0.23 eV can be achieved when the ZnO$_{1-x}$S$_{x}$ buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for $x>0.6$, which reaches the highest value of 17.55% by our proposed optimal sulfur content $x=0.6$. Our results provide guidance in dealing with the ZnO$_{1-x}$S$_{x}$ buffer layer deposition for high efficiency CZTS solar cells.
|
|
Received: 08 June 2016
Published: 27 October 2016
|
|
PACS: |
78.40.Fy
|
(Semiconductors)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
|
Fund: Supported by the Guiding Project of Strategic Emerging Industries of Fujian Provincial Department of Science and Technology under Grant No 2015H0010, the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SIC, and the Natural Science Foundation of Fujian Province under Grant No 2016J01751. |
|
|
[1] | Liu F Y, Zhang K, Lai Y Q, Li L, Zhang Z A and Liu Y X 2010 Electrochem. Solid-State Lett. 13 H379 | [2] | Wang K, Gunawan O, Todorov T et al 2010 Appl. Phys. Lett. 97 143508 | [3] | Katagiri H, Jimbo K, Maw W S et al 2009 Thin Solid Films 517 2455 | [4] | Ennaoui A, Lux-Steiner M, Weber A et al 2009 Thin Solid Films 517 2511 | [5] | Todorov T K, Reuter K B and Mitzi D B 2010 Adv. Mater. 22 E156 | [6] | Persson C, Platzer-Bjorkman C, Malmstrom J et al 2006 Phys. Rev. Lett. 97 146403 | [7] | Platzer-Bjorkman C, Torndahl T, Abou-Ras D et al 2006 J. Appl. Phys. 100 044506 | [8] | Park H H, Heasley R and Gordon R G 2013 Appl. Phys. Lett. 102 132110 | [9] | Bakke J R, Tanskanen J T, Hagglund C et al 2012 J. Vac. Sci. Technol. A 30 01A135 | [10] | Merdes S, Saez-Araoz R, Ennaoui A et al 2009 Appl. Phys. Lett. 95 213502 | [11] | Fonash S, Arch J, Cuiffi J et al 1997 A Manual for AMPS-1D (Philadelphia: Pennsylvania State University) | [12] | Shukla R K, Srivastava A, Srivastava A et al 2006 J. Cryst. Growth 294 427 | [13] | Hossain M I, Chelvanathan P, Zaman M et al 2011 Chalcogenide Lett. 8 315 | [14] | Seol J S, Lee S Y, Lee J C et al 2003 Sol. Energy Mater. Sol. Cells 75 155 | [15] | Muhunthan N, Singh O P, Singh S et al 2013 Int. J. Photoenergy 2013 1 | [16] | Gloeckler M, Fahrenbruch A L, Sites J R, 2003 Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion (Osokn, Japan) p 491 | [17] | Burgelman M, Marlein J, 2008 Proceddings of 23rd European Photovoltaic Solar Energy Conference (Valencia, Spain) p 2151 | [18] | Lu M Y, Song J H, Lu M P et al 2009 ACS Nano 3 357 | [19] | Minemoto T, Matsui T, Takakura H et al 2001 Sol. Energy Mater. Sol. Cells 67 83 | [20] | Ericson T, Scragg J J, Hultqvist A et al 2014 IEEE J. Photovoltaics 4 465 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|