Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 107801    DOI: 10.1088/0256-307X/33/10/107801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Analysis of Effect of Zn(O,S) Buffer Layer Properties on CZTS Solar Cell Performance Using AMPS
Ling-Yan Lin1,2, Yu Qiu1,2**, Yu Zhang2, Hao Zhang2
1Institute of Advanced Photovoltaics, Fujian Jiangxia University, Fuzhou 350108
2College of Electronic Information Science, Fujian Jiangxia University, Fuzhou 350108
Cite this article:   
Ling-Yan Lin, Yu Qiu, Yu Zhang et al  2016 Chin. Phys. Lett. 33 107801
Download: PDF(522KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Cu$_{2}$ZnSnS$_{4}$ (CZTS)-based solar cell is numerically simulated by a one-dimensional solar cell simulation software analysis of microelectronic and photonic structures (AMPS-1D). The device structure used in the simulation is Al/ZnO:Al/nZn(O,S)/pCZTS/Mo. The primary motivation of this simulation work is to optimize the composition in the ZnO$_{1-x}$S$_{x}$ buffer layer, which would yield higher conversion efficiency. By varying S/(S+O) ratio $x$, the conduction band offset (CBO) at CZTS/Zn(O,S) interface can range from $-$0.23 eV to 1.06 eV if the full range of the ratio is considered. The optimal CBO of 0.23 eV can be achieved when the ZnO$_{1-x}$S$_{x}$ buffer has an S/(S+O) ratio of 0.6. The solar cell efficiency first increases with increasing sulfur content and then decreases abruptly for $x>0.6$, which reaches the highest value of 17.55% by our proposed optimal sulfur content $x=0.6$. Our results provide guidance in dealing with the ZnO$_{1-x}$S$_{x}$ buffer layer deposition for high efficiency CZTS solar cells.
Received: 08 June 2016      Published: 27 October 2016
PACS:  78.40.Fy (Semiconductors)  
  78.20.Bh (Theory, models, and numerical simulation)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Supported by the Guiding Project of Strategic Emerging Industries of Fujian Provincial Department of Science and Technology under Grant No 2015H0010, the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure of Shanghai Institute of Ceramics of Chinese Academy of Sciences under Grant No SKL201404SIC, and the Natural Science Foundation of Fujian Province under Grant No 2016J01751.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/107801       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/107801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ling-Yan Lin
Yu Qiu
Yu Zhang
Hao Zhang
[1]Liu F Y, Zhang K, Lai Y Q, Li L, Zhang Z A and Liu Y X 2010 Electrochem. Solid-State Lett. 13 H379
[2]Wang K, Gunawan O, Todorov T et al 2010 Appl. Phys. Lett. 97 143508
[3]Katagiri H, Jimbo K, Maw W S et al 2009 Thin Solid Films 517 2455
[4]Ennaoui A, Lux-Steiner M, Weber A et al 2009 Thin Solid Films 517 2511
[5]Todorov T K, Reuter K B and Mitzi D B 2010 Adv. Mater. 22 E156
[6]Persson C, Platzer-Bjorkman C, Malmstrom J et al 2006 Phys. Rev. Lett. 97 146403
[7]Platzer-Bjorkman C, Torndahl T, Abou-Ras D et al 2006 J. Appl. Phys. 100 044506
[8]Park H H, Heasley R and Gordon R G 2013 Appl. Phys. Lett. 102 132110
[9]Bakke J R, Tanskanen J T, Hagglund C et al 2012 J. Vac. Sci. Technol. A 30 01A135
[10]Merdes S, Saez-Araoz R, Ennaoui A et al 2009 Appl. Phys. Lett. 95 213502
[11]Fonash S, Arch J, Cuiffi J et al 1997 A Manual for AMPS-1D (Philadelphia: Pennsylvania State University)
[12]Shukla R K, Srivastava A, Srivastava A et al 2006 J. Cryst. Growth 294 427
[13]Hossain M I, Chelvanathan P, Zaman M et al 2011 Chalcogenide Lett. 8 315
[14]Seol J S, Lee S Y, Lee J C et al 2003 Sol. Energy Mater. Sol. Cells 75 155
[15]Muhunthan N, Singh O P, Singh S et al 2013 Int. J. Photoenergy 2013 1
[16]Gloeckler M, Fahrenbruch A L, Sites J R, 2003 Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion (Osokn, Japan) p 491
[17]Burgelman M, Marlein J, 2008 Proceddings of 23rd European Photovoltaic Solar Energy Conference (Valencia, Spain) p 2151
[18]Lu M Y, Song J H, Lu M P et al 2009 ACS Nano 3 357
[19]Minemoto T, Matsui T, Takakura H et al 2001 Sol. Energy Mater. Sol. Cells 67 83
[20]Ericson T, Scragg J J, Hultqvist A et al 2014 IEEE J. Photovoltaics 4 465
Related articles from Frontiers Journals
[1] Dou-Dou Qian, Lei Liu, Zhi-Xue Xing, Rui Dong, Li Wu, Hong-Kun Cai, Yong-Fa Kong, Yi Zhang, and Jing-Jun Xu. Improvement of Photoluminescence of Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ by Adding Additional CH$_{3}$NH$_{3}$I during Grinding[J]. Chin. Phys. Lett., 2021, 38(8): 107801
[2] Gen Yue, Yu Lei, Jun-Hui Die, Hai-Qiang Jia, Hong Chen. Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography[J]. Chin. Phys. Lett., 2018, 35(5): 107801
[3] Alireza Samavati, Zahra Samavati, A. F. Ismail, M. H. D. Othman, M. A. Rahman, A. K. Zulhairun. Efficient Visible Photoluminescence from Self-Assembled Ge QDs Embedded in Silica Matrix[J]. Chin. Phys. Lett., 2017, 34(6): 107801
[4] Bonghoon Kang, Sung-Tae Hwang. Investigations for the Surface of the Oxide Semiconductor Changes by Reduction[J]. Chin. Phys. Lett., 2016, 33(05): 107801
[5] Jing Zhao, Jian Zhang, Cui Qin, Hui-Long Yu, Yi-Jun Zhang, Xin-Long Chen, Ben-Kang Chang. Structural Design and Experiment of Narrow-Band Response GaAlAs Photocathodes[J]. Chin. Phys. Lett., 2016, 33(02): 107801
[6] CHENG Ying, WANG Jun-Zhuan, WEI Xiao-Xu, GUO Dan, WU Bing, YU Lin-Wei, WANG Xin-Ran, SHI Yi. Tuning Photoluminescence Performance of Monolayer MoS2 via H2O2 Aqueous Solution[J]. Chin. Phys. Lett., 2015, 32(11): 107801
[7] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 107801
[8] FANG Dai-Feng, WANG Zhong-Ping, DAI Ru-Cheng, ZHANG Zeng-Ming, DING Ze-Jun. Temperature Dependence of Luminescence of CdS:Mn/ZnS Core-Shell Quantum Dots[J]. Chin. Phys. Lett., 2014, 31(05): 107801
[9] LIU Ao, LIU Guo-Xia, SHAN Fu-Kai, ZHU Hui-Hui, B. C. Shin, W. J. Lee, C. R. Cho. High-Performance InTiZnO Thin-Film Transistors Deposited by Magnetron Sputtering[J]. Chin. Phys. Lett., 2013, 30(12): 107801
[10] LIU Guo-Dong, WU Chong-Qing, WANG Fu, MAO Ya-Ya. Measurement of the Internal Loss Coefficient of Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2013, 30(5): 107801
[11] TONG Fei, ZHU Zhi-Chao, LIU Bo, YI Ya-Sha, GU Mu, CHEN Hong. The Luminescence of a CuI Film Scintillator Controlled by a Distributed Bragg Reflector[J]. Chin. Phys. Lett., 2013, 30(2): 107801
[12] LI Liang, ZHAO De-Gang, JIANG De-Sheng, LIU Zong-Shun, CHEN Ping, WU Liang-Liang, LE Ling-Cong, WANG Hui, YANG Hui. The Effects of a Low-Temperature GaN Interlayer on the Performance of InGaN/GaN Solar Cells[J]. Chin. Phys. Lett., 2013, 30(2): 107801
[13] NI Zhen-Yi, PI Xiao-Dong, YANG De-Ren. Can Hydrogen be Incorporated inside Silicon Nanocrystals?[J]. Chin. Phys. Lett., 2012, 29(7): 107801
[14] ZHOU Yan, WANG Kun, FANG Xiao-Yong, HOU Zhi-Ling, JIN Hai-Bo, CAO Mao-Sheng. Different Roles of a Boron Substitute for Carbon and Silicon in β-SiC[J]. Chin. Phys. Lett., 2012, 29(7): 107801
[15] LIU Jing,FENG Shi-Wei**,ZHANG Guang-Chen,ZHU Hui,GUO Chun-Sheng,QIAO Yan-Bin,LI Jing-Wan. A Novel Method for Measuring the Temperature in the Active Region of Semiconductor Modules[J]. Chin. Phys. Lett., 2012, 29(4): 107801
Viewed
Full text


Abstract