Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 107601    DOI: 10.1088/0256-307X/33/10/107601
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electron Spin Decoherence of Nitrogen-Vacancy Center Coupled to Multiple Spin Baths
Jian Xing1, Yan-Chun Chang1, Ning Wang1, Gang-Qin Liu1, Xin-Yu Pan1,2**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Jian Xing, Yan-Chun Chang, Ning Wang et al  2016 Chin. Phys. Lett. 33 107601
Download: PDF(625KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (P1 center) and $^{13}$C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ib diamond; or $^{13}$C nuclear spin bath for type-IIa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time ($T_2$) of about 400 μs. However, in a high-purity type-IIa diamond where $^{13}$C nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin $T_2$ time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherence mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.
Received: 02 August 2016      Published: 27 October 2016
PACS:  76.30.Mi (Color centers and other defects)  
  76.60.Lz (Spin echoes)  
  76.70.Dx (Electron-nuclear double resonance (ENDOR), electron double resonance (ELDOR))  
Fund: Supported by the National Basic Research Program of China under Grant Nos 2014CB921402 and 2015CB921103, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07010300, and the National Natural Science Foundation of China under Grant No 11574386.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/107601       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/107601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Xing
Yan-Chun Chang
Ning Wang
Gang-Qin Liu
Xin-Yu Pan
[1]Stanwix P L et al 2010 Phys. Rev. B 82 201201
[2]Zhao N, Ho S W and Liu R B 2012 Phys. Rev. B 85 115303
[3]Bar-Gill N, Pham L M, Jarmola A, Budker D and Walsworth R L 2013 Nat. Commun. 4 1743
[4]Steinert S et al 2013 Nat. Commun. 4 1607
[5]Zhao N, Hu J L, Ho S W, Wan J T K and Liu R B 2011 Nat. Nanotechnol. 6 242
[6]Zhao N et al 2012 Nat. Nanotechnol. 7 657
[7]Le Sage D et al 2013 Nature 496 486
[8]Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83
[9]McGuinness L P et al 2011 Nat. Nanotechnol. 6 358
[10]Kubo Y et al 2010 Phys. Rev. Lett. 105 140502
[11]Kubo Y et al 2011 Phys. Rev. Lett. 107 220501
[12]Zhu X et al 2011 Nature 478 221
[13]Saito S et al 2013 Phys. Rev. Lett. 111 107008
[14]Marcos D et al 2010 Phys. Rev. Lett. 105 210501
[15]MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A and Fuchs G D 2013 Phys. Rev. Lett. 111 227602
[16]Bennett S D et al 2013 Phys. Rev. Lett. 110 156402
[17]Pham L M et al 2012 Phys. Rev. B 86 045214
[18]Bar-Gill N et al 2012 Nat. Commun. 3 858
[19]Pham L M et al 2011 New J. Phys. 13 045021
[20]Armstrong S, Rogers L J, McMurtrie R L and Manson N B 2010 Phys. Procedia 3 1569
[21]Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352
[22]Hanson R, Mendoza F M, Epstein R J and Awschalom D D 2006 Phys. Rev. Lett. 97 087601
[23]Hanson R, Gywat O and Awschalom D D 2006 Phys. Rev. B 74 161203
[24]Fischer R, Jarmola A, Kehayias P and Budker D 2013 Phys. Rev. B 87 125207
[25]Jarmola A, Acosta V M, Jensen K, Chemerisov S and Budker D 2012 Phys. Rev. Lett. 108 197601
[26]de Lange G et al 2012 Sci. Rep. 2 382
[27]Shi F Z et al 2015 Science 347 1135
[28]Arai K et al 2015 Nat. Nanotechnol. 10 859
[29]DeVience S J et al 2015 Nat. Nanotechnol. 10 129
[30]Trifunovic L et al 2015 Nat. Nanotechnol. 10 541
Related articles from Frontiers Journals
[1] Jian-Hong Dai, Yan-Xing Shang, Yong-Hong Yu, Yue Xu, Hui Yu, Fang Hong, Xiao-Hui Yu, Xin-Yu Pan, and Gang-Qin Liu. Optically Detected Magnetic Resonance of Diamond Nitrogen-Vacancy Centers under Megabar Pressures[J]. Chin. Phys. Lett., 2022, 39(11): 107601
[2] Wen-Hao He, Ming-Ming Dong, Zhen-Zhong Hu, Qi-Han Zhang, Bo Yang, Ying Liu, Xiao-Long Fan, Guan-Xiang Du. High Resolution Microwave B-Field Imaging Using a Micrometer-Sized Diamond Sensor[J]. Chin. Phys. Lett., 2019, 36(12): 107601
[3] Pei Pei, He-Fei Huang, Yan-Qing Guo, He-Shan Song. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface[J]. Chin. Phys. Lett., 2016, 33(02): 107601
[4] ZHOU Lei-Ming, DONG Yang, SUN Fang-Wen. Magnetic Field Measurement with Heisenberg Limit Based on Solid Spin NOON State[J]. Chin. Phys. Lett., 2015, 32(06): 107601
[5] Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes, Rosa Maria Montereali, Larissa N. da Costa, Hypolito J. Kalinowski. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride[J]. Chin. Phys. Lett., 2014, 31(1): 107601
[6] ZHAO Yu-Jing, FANG Xi-Ming, ZHOU Fang, SONG Ke-Hui. Preparation of N-Qubit GHZ State with a Hybrid Quantum System Based on Nitrogen-Vacancy Centers[J]. Chin. Phys. Lett., 2013, 30(5): 107601
[7] TAO Kun, ZHANG Qi-Ren, LIU Ting-Yu, ZHANG Fei-Wu. Origin of the 420nm Absorption Band and Effect of Doping Fluorine in PbWO4 Crystals[J]. Chin. Phys. Lett., 2005, 22(1): 107601
[8] ZHANG Qi-Ren, LIU Ting-Yu, YAN Fei-Nan. V-F and V+K Aggregate Colour Centres: Origin of the Room-Temperature 350 nm Absorption Band in PbWO4[J]. Chin. Phys. Lett., 2004, 21(6): 107601
[9] ZHAO Quan-Zhong, QIU Jian-Rong, YANG Lü-Yun, JIANG Xiong-Wei, ZHAO Chong-Jun, ZHU Cong-Shan. Fabrication of Microstructures in LiF Crystals by a Femtosecond Laser[J]. Chin. Phys. Lett., 2003, 20(10): 107601
[10] ZHOU Qin-Ling, LIU Li-Ying, XU Lei, WANG Wen-Cheng, ZHU Cong-Shan, GAN Fu-Xi,. Near-Infrared Femtosecond Laser Induced Defect Formation in High Purity Silica Below the Optical Breakdown Threshold[J]. Chin. Phys. Lett., 2003, 20(10): 107601
[11] JIN Tongzheng, WANG Dazhi, HAN Shiying, SUI Yunxia, ZHAO Xiaoning, JIN Sizhao*. Investigation of Nanocrystalline SnO2 by Electron Spin Resonance[J]. Chin. Phys. Lett., 1992, 9(10): 107601
Viewed
Full text


Abstract