Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 107501    DOI: 10.1088/0256-307X/33/10/107501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Controllable Synthesis and Magnetic Properties of Monodisperse Fe$_{3}$O$_{4}$ Nanoparticles
Zhu-Liang Wang, Hui Ma, Fang Wang**, Min Li, Li-Guo Zhang, Xiao-Hong Xu**
Key Laboratory of Magnetic Molecules and Magnetic Information Material (Ministry of Education), School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004
Cite this article:   
Zhu-Liang Wang, Hui Ma, Fang Wang et al  2016 Chin. Phys. Lett. 33 107501
Download: PDF(1293KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetite (Fe$_{3}$O$_{4}$) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe$_{3}$O$_{4}$ nanoparticles have a mean diameter from 5 nm to 16 nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe$_{3}$O$_{4}$ nanoparticles in small size about 5 nm exhibit superparamagnetic properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe$_{3}$O$_{4}$ nanoparticles develop ferromagnetic properties when the diameter increases to about 16 nm.
Received: 02 June 2016      Published: 27 October 2016
PACS:  75.47.Lx (Magnetic oxides)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.10.Dn (Growth from solutions)  
  81.16.Be (Chemical synthesis methods)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51571135, 11274214 and 61434002, the Special Funds of Shanxi Scholars Program under Grant No IRT1156, Collaborative Innovation Center for Shanxi Advanced Permanent Materials and Technology, and the Special Funds of the Ministry of Education of China under Grant No 20121404130001.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/107501       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/107501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhu-Liang Wang
Hui Ma
Fang Wang
Min Li
Li-Guo Zhang
Xiao-Hong Xu
[1]Jun Y W et al 2005 J. Am. Chem. Soc. 127 5732
[2]Sun S N et al 2014 Chin. Phys. B 23 037503
[3]Arsalani N, Fattahi H and Nazarpoor M 2010 eXPRESS Polym. Lett. 4 329
[4]Zhu J et al 2015 Nanoscale 7 3392
[5]Liu X W et al 2009 Cryst. Growth Des. 9 197
[6]Wang C, Daimon H and Sun S H 2009 Nano Lett. 9 1493
[7]Zeng T Q et al 2011 Org. Lett. 13 442
[8]Yavuz C T et al 2010 Environ. Geochem. Health 32 327
[9]Yavuz C T et al 2006 Science 314 964
[10]Feng L Y et al 2012 J. Hazard. Mater. 217 439
[11]Xiao S W et al 2015 Adsorpt. Sci. Technol. 33 25
[12]Chikazumi S et al 1987 J. Magn. Magn. Mater. 65 245
[13]Lin C L, Lee C F and Chiu W Y 2005 J. Colloid Interface Sci. 291 411
[14]Madrid S I U et al 2015 Nanoscale Res. Lett. 10 1
[15]Yang X Y et al 2009 J. Mater. Chem. 19 2710
[16]Gupta A K and Gupta M 2005 Biomaterials 26 3995
[17]Pankhurst Q A et al 2003 J. Phys. D 36 R167
[18]Xu C J and Sun S H 2009 Dalton Trans. 29 5583
[19]Sun S H and Zeng H 2002 J. Am. Chem. Soc. 124 8204
[20]Ho C H et al 2011 Chem. Mater. 23 1753
[21]Li C H et al 2014 Nano Res. 7 536
[22]LaMer V K and Dinegar R H 1950 J. Am. Chem. Soc. 72 4847
[23]Voorhees P W 1985 J. Stat. Phys. 38 231
[24]Xu Z C et al 2009 Chem. Mater. 21 1778
[25]Song Q and Zhang Z J 2004 J. Am. Chem. Soc. 126 6164
[26]Sun S H et al 2004 J. Am. Chem. Soc. 126 273
[27]Hou Y L, Xu Z C and Sun S H 2007 Angew. Chem. Int. Ed. 46 6329
Related articles from Frontiers Journals
[1] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 107501
[2] Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao, Yafei Zhao, Jiai Ning, Kunpeng Zhang, Xianyang Lu, Liang He, and Yongbing Xu. Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films[J]. Chin. Phys. Lett., 2020, 37(7): 107501
[3] Xin Li, Jing-Zhi Han, Xiong-Zuo Zhang, Yin-Feng Zhang, Hai-Dong Tian, Ming-Zhu Xue, Kun Li, Xin Wen, Wen-Yun Yang, Shun-Quan Liu, Chang-Sheng Wang, Hong-Lin Du, Xiao-Dong Zhang, Xin-An Wang, Ying-Chang Yang, Jin-Bo Yang. Strain Induced Nanopillars and Variation of Magnetic Properties in La$_{0.825}$Sr$_{0.175}$MnO$_{3}$/LaAlO$_{3}$ Films[J]. Chin. Phys. Lett., 2019, 36(4): 107501
[4] Jun Zheng, Kai Du, Di Xiao, Zheng-Yang Zhou, Wen-Gang Wei, Jin-Jie Chen, Li-Feng Yin, Jian Shen. Synthesis of Ordered Ultra-long Manganite Nanowires via Electrospinning Method[J]. Chin. Phys. Lett., 2016, 33(09): 107501
[5] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Ferroelectricity in the Ferrimagnetic Phase of Fe1?xMnxV2O4[J]. Chin. Phys. Lett., 2015, 32(08): 107501
[6] WEI Wen-Gang, WANG Hui, ZHANG Kai, LIU Hao, KOU Yun-Fang, CHEN Jin-Jie, DU Kai, ZHU Yin-Yan, HOU Deng-Lu, WU Ru-Qian, YIN Li-Feng, SHEN Jian. Large Tunability of Physical Properties of Manganite Thin Films by Epitaxial Strain[J]. Chin. Phys. Lett., 2015, 32(08): 107501
[7] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Orbital Dilution Effect on Structural and Magnetic Properties of FeMnXV2O4[J]. Chin. Phys. Lett., 2015, 32(02): 107501
[8] XIAO Li-Xia, JIN Zhao, XIA Zheng-Cai, SHI Li-Ran, HUANG Jun-Wei, CHEN Bo-Rong, SHANG Cui, WEI Meng, LONG Zhuo. Effects of Doping on the Magnetic Properties and Frustration of Hexagonal YMn0.9A0.1O3 (A=Al, Fe, and Cu)[J]. Chin. Phys. Lett., 2015, 32(01): 107501
[9] PENG Long, HU Yue-Bin, GUO Cheng, LI Le-Zhong, WANG Rui, HU Yun, TU Xiao-Qiang. Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators[J]. Chin. Phys. Lett., 2015, 32(01): 107501
[10] SONG Ying-Jie, ZHANG Qing-Hua, SHEN Xi, NI Xiao-Dong, YAO Yuan, YU Ri-Cheng. Room-Temperature Magnetism Realized by Doping Fe into Ferroelectric LiTaO3[J]. Chin. Phys. Lett., 2014, 31(1): 107501
[11] Asma Khalid, Saadat Anwar Siddiqi, Affia Aslam. Synthesis and Characterization of Alkaline-Earth Metal (Ca, Sr, and Ba) Doped Nanodimensional LaMnO3 Rare-Earth Manganites[J]. Chin. Phys. Lett., 2013, 30(7): 107501
[12] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 107501
[13] HU Ling, SUN Yu-Ping, WANG Bo, LUO Xuan, SHENG Zhi-Gao, ZHU Xue-Bin, SONG Wen-Hai, YANG Zhao-Rong, DAI Jian-Ming. Modulation of Insulator-Metal Transition Temperature by Visible Light in La7/8Sr1/8MnO3 Thin Film[J]. Chin. Phys. Lett., 2010, 27(9): 107501
[14] ZHUANG Bin, XU Yan, LAI Heng, HUANG Zhi-Gao, CHEN Shui-Yuan, LIN Ying-Bin, LI Shang-Dong, LAI Fa-Chun. Enhanced Magnetoresistance of (La0.67Ca0.33MnO3) Composites Coated byZn0.95Co0.05O[J]. Chin. Phys. Lett., 2009, 26(5): 107501
[15] GAO Tian, CAO Shi-Xun, ZHANG Jin-Cang, YU Li-Ming, KANG Bao-Juan, YUAN Shu-Juan,. Nano-sized Domain Wall Pinning Effects in Dilute Cu-Doped Perovskite LaMn1-xCuxO3 Manganites[J]. Chin. Phys. Lett., 2008, 25(9): 107501
Viewed
Full text


Abstract