CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
In Situ Luminescence Measurement from Silica Glasses Irradiated with 20keV H$^{-}$ Ions |
Ying-Jie Chu1, Guang-Fu Wang1,2**, Meng-Lin Qiu1, Mi Xu1, Li Zheng1 |
1College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 2Beijing Radiation Centre, Beijing 100875
|
|
Cite this article: |
Ying-Jie Chu, Guang-Fu Wang, Meng-Lin Qiu et al 2016 Chin. Phys. Lett. 33 106101 |
|
|
Abstract A new low-energy negative-ion induced luminescence setup was recently developed at the injector of the GIC4117 $2\times1.7$ MV Tandem accelerator in Beijing Normal University. In situ luminescence measurements are performed on silica glass by using 20 keV H$^{-}$ ions at room temperature. Gauss fitting of the spectra revealed six overlapping components at about 2.7 eV, 2.4 eV, 1.9 eV, 1.8 eV, 4.2 eV, and 3.6 eV, which except for the new observed emission band at 3.6 eV are assigned to the creation of type II oxygen-deficient centers, E$'$ centers, non-bridging oxygen hole centers with different precursor states, and type-I oxygen-deficient centers. The fitted results of the saturation concentration show that self-trapped exciton recombination at type-II oxygen-deficient centers is the main luminescence emission process. The evolution of the luminescence intensity and full width at half maximums as a function of ion fluence is also discussed. It is found that the number of recombination centers reaches its maximum at lower fluence, and the area ratio between blue bands and red bands is much lower than that under high energy H$^{+}$ ion irradiation.
|
|
Received: 05 July 2016
Published: 27 October 2016
|
|
|
|
|
|
[1] | Townsend P D, Khanlary M and Hole D E 2007 Surf. Coat. Technol. 201 8160 | [2] | Townsend P D and Crespillo M L 2015 Phys. Procedia 66 345 | [3] | Bachiller-Perea D, Jiménez-Rey D, Mu?oz-Martín A et al 2015 J. Non-Cryst. Solids 428 36 | [4] | Crespillo M L, Graham J T, Zhang Y et al 2016 J. Lumin. 172 208 | [5] | Townsend P D and Wang Y F 2013 Energy Procedia 41 64 | [6] | Crespillo M L, Graham J T, Zhang Y et al 2016 Rev. Sci. Instrum. 87 24902 | [7] | Tanabe T, Fujiwara M, Iida T et al 1995 Fusion Eng. Des. 29 435 | [8] | Stevens-Kalceff M A 2009 Mineral. Mag. 73 585 | [9] | Tanabe T, Fujiwara M and Miyazaki K 1996 J. Nucl. Mater. 233 1344 | [10] | Tsuji H, Gotoh Y and Ishikawa J 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 141 645 | [11] | Ishikawa J 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 261 1032 | [12] | Zheng C, Wang G, Chu Y et al 2016 Nucl. Instrum. Methods Phys. Res. Sect. B 370 73 | [13] | Agulló-López F, Climent-Font A, Mu?oz-Martín A et al 2016 Prog. Mater. Sci. 76 1 | [14] | Wang Y and Townsend P D 2013 J. Lumin. 142 202 | [15] | Kajihara K, Hirano M, Skuja L et al 2008 Phys. Rev. B 78 094201 | [16] | Skuja L 1998 J. Non-Cryst. Solids 239 16 | [17] | Nagata S, Yamamoto S, Inouye A et al 2007 J. Nucl. Mater. 367 1009 | [18] | Yoshida T, Tanabe T, Watanabe M et al 2004 J. Nucl. Mater. 329 982 | [19] | Pe?a-Rodríguez O, Jiménez-Rey D, Manzano-Santamaría J et al 2012 Appl. Phys. Express 5 011101 | [20] | Bachiller-Perea D, Jiménez-Rey D, Mu?oz-Martín A et al 2016 J. Phys. D 49 088501 | [21] | Ma M, Chen X, Yang K et al 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 67 | [22] | Messina F, Vaccaro L and Cannas M 2010 Phys. Rev. B 81 035212 | [23] | Nagata S, Katsui H, Tsuchiya B et al 2009 J. Nucl. Mater. 386 104 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|