Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 105201    DOI: 10.1088/0256-307X/33/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Propagation of Surface Modes in a Warm Non-Magnetized Quantum Plasma System
Chun-Hua Li1, Zhen-Wei Xia2, Ya-Ping Wang1, Xiao-Hui Zhang1**
1Department of Information Engineering, Hefei University of Technology, Hefei 230009
2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
Chun-Hua Li, Zhen-Wei Xia, Ya-Ping Wang et al  2016 Chin. Phys. Lett. 33 105201
Download: PDF(405KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The propagation of surface modes in warm non-magnetized quantum plasma is investigated. The surface modes are assumed to propagate on the plane between vacuum and warm quantum plasma. The quantum hydrodynamic model including quantum diffraction effect (the Bohm potential) and quantum statistical pressure is used to derive a new dispersion relation of surface modes. The new dispersion relation of surface modes is analyzed in some special interesting cases. It is shown that the dispersion relation can be reduced to the earlier results in some special cases. The results indicate that the quantum effects can facilitate the propagation of surface modes in such a semi-bounded plasma system. This work is helpful to understand the physical characteristics of the surface modes and the bounded quantum plasma.
Received: 02 June 2016      Published: 27 October 2016
PACS:  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  82.20.Xr (Quantum effects in rate constants (tunneling, resonances, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11547137, and the Fundamental Research Funds for the Central Universities under Grant Nos JZ2015HGBZ0123 and JZ2016HGBZ0759.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/105201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chun-Hua Li
Zhen-Wei Xia
Ya-Ping Wang
Xiao-Hui Zhang
[1]Haas F 2005 Phys. Plasmas 12 062117
[2]Marklund M and Shukla P K 2006 Rev. Mod. Phys. 78 591
[3]Moaied M and Ostrikov K 2015 SPIE Micro+Nano Mater. Devices Appl. P 96682Z0
[4]Li C H, Wu Z W, Ren H J, Yang W H and Chu P K 2012 Phys. Plasmas 19 122114
[5]Ren H J, Wu Z W, Cao J T and Chu P K 2009 Phys. Plasmas 16 103705
[6]Tame M S et al 2013 Nat. Phys. 9 329
[7]Wei L and Wang Y N 2007 Phys. Rev. B 75 193407
[8]Killian T C 2006 Nature 441 298
[9]Manfredi G and Hervieux P A 2007 Appl. Phys. Lett. 91 061108
[10]Glenzer S H, Landen O L and Neumayer P 2007 Phys. Rev. Lett. 98 065002
[11]Wang Y L, Shukla P K and Eliasson B 2013 Phys. Plasmas 20 013103
[12]Manfredi G 2005 Fields Inst. Commun. 46 263
[13]Ren H J, Wu Z W and Chu P K 2007 Phys. Plasmas 14 062102
[14]Ren H J, Wu Z W, Cao J T and Chu P K 2009 Phys. Plasmas 16 072101
[15]Mohamed B F 2010 Phys. Scr. 82 065502
[16]Misra A P, Ghosh N K and Shukla P K 2010 J. Plasma Phys. 76 87
[17]Shokri B and Niknam A R 2005 Plasma Phys. Control. Fusion 47 1805
[18]Eliasson B and Shukla P K 2010 J. Plasma Phys. 76 7
[19]Khorashadizadeh S M, Boroujeni S T, Rastbood E and Niknam A R 2012 Phys. Plasmas 19 032109
[20]Aziz M A 2012 Phys. Lett. A 376 169
[21]Mohamed B F and Aziz M A 2010 Int. J. Plasma Sci. Eng. 2010 693049
[22]Moaied M, Tyshetskiy Y and Vladimirov S V 2013 Phys. Plasmas 20 022116
[23]Misra A P 2011 Phys. Rev. E 83 057401
[24]Lee H J 1995 Plasma Phys. Control. Fusion 37 755
[25]Moaied M, Yajadda M and Ostrikov K 2015 Plasmonics 10 1615
[26]Mohamed B F and Elbasha N M 2015 Phys. Plasmas 22 102101
[27]Zhu J, Zhao H and Qiu M 2013 Phys. Lett. A 377 1736
[28]Shukla P K and Stenflo L 2008 J. Plasma Phys. 74 719
[29]Mushtaq A and Vladimirov S V 2010 Phys. Plasmas 17 102310
[30]Stenflo L 1996 Phys. Scr. T63 59
[31]Niknam A R, Boroujeni S T and Khorashadizadeh S M 2013 Phys. Plasmas 20 122106
Related articles from Frontiers Journals
[1] P. W. Shi, Y. R. Yang, W. Chen, Z. B. Shi, Z. C. Yang, L. M. Yu, T. B. Wang, X. X. He, X. Q. Ji, W. L. Zhong, M. Xu, and X. R. Duan. Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak[J]. Chin. Phys. Lett., 2022, 39(10): 105201
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 105201
[3] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 105201
[4] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 105201
[5] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 105201
[6] Yang Chen, Wenlu Zhang, Jian Bao, Zhihong Lin, Chao Dong, Jintao Cao, and Ding Li. Verification of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle Simulations[J]. Chin. Phys. Lett., 2020, 37(9): 105201
[7] S. Hussain, N. Akhtar, N. Mustafa. Magnetosonic Shocks in Ultra-Relativistic Dissipative Degenerate Plasmas[J]. Chin. Phys. Lett., 2016, 33(08): 105201
[8] Qi-Xin Wu, Zhen-Wei Xia, Wei-Hong Yang. Traveling Wave Solutions of the Incompressible Ideal Hall Magnetohydrodynamics[J]. Chin. Phys. Lett., 2016, 33(06): 105201
[9] LIU Yuan-Tao, ZHAO Hua, LI Lei, FENG Yong-Yong. Solution of Magnetohydrodynamic Oscillations in Electrolytes with Ion-Neutral Collisions[J]. Chin. Phys. Lett., 2012, 29(11): 105201
[10] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 105201
[11] GUO Wen-Feng, WANG Shao-Jie, LI Jian-Gang. Numerical Investigation of Finite k Effect on Damping Rate of Geodesic Acoustic Mode in Collisionless Plasmas[J]. Chin. Phys. Lett., 2009, 26(4): 105201
[12] WANG De-Yu. Electron Acceleration by a Finite-Amplitude Solitary Kinetic Alfvén Wave[J]. Chin. Phys. Lett., 2009, 26(1): 105201
[13] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 105201
[14] HE Jin-Chun, CHEN Zong-Yun, YAN Tian, HUANG Nian-Ning. Inverse Scattering Transform in Squared Spectral Parameter for DNLS Equation under Vanishing Boundary Conditions[J]. Chin. Phys. Lett., 2008, 25(7): 105201
[15] WANG De-Yu, SONG Qi-Wu, YANG Lei. Electron Acceleration by Small-Amplitude Solitary Kinetic Alfven Wave in a Low-Beta Plasma[J]. Chin. Phys. Lett., 2008, 25(2): 105201
Viewed
Full text


Abstract