Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 104401    DOI: 10.1088/0256-307X/33/10/104401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effects of Solid Matrix and Porosity of Porous Medium on Heat Transfer of Marangoni Boundary Layer Flow Saturated with Power-Law Nanofluids
Hui Chen1**, Tian-Li Xiao1, Jia-Yang Chen1, Ming Shen2
1School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116
2College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116
Cite this article:   
Hui Chen, Tian-Li Xiao, Jia-Yang Chen et al  2016 Chin. Phys. Lett. 33 104401
Download: PDF(606KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of the solid matrix and porosity of the porous medium are first introduced to the study of power-law nanofluids, and the Marangoni boundary layer flow with heat generation is investigated. Two cases of solid matrix of porous medium including glass balls and aluminum foam are considered. The governing partial differential equations are simplified by dimensionless variables and similarity transformations, and are solved numerically by using a shooting method with the fourth–fifth-order Runge–Kutta integration technique. It is indicated that the increase of the porosity leads to the enhancement of heat transfer in the surface of the Marangoni boundary layer flow.
Received: 10 July 2016      Published: 27 October 2016
PACS:  44.30.+v (Heat flow in porous media)  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 51305080.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/104401       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/104401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui Chen
Tian-Li Xiao
Jia-Yang Chen
Ming Shen
[1]Choi S U S and Eastman J A 1995 Asme Fed 66 99105
[2]Tiwari R K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002
[3]Donald A and Nield A B 2013 Convection in Porous Media (New York: Springer)
[4]Buongiorno J 2006 J. Heat Transfer 128 240
[5]Azmi W H et al 2016 Renewable Sustainable Energy Rev. 53 1046
[6]Lin Y H, Zheng L C and Zhang X X 2014 Int. J. Heat Mass Transfer 77 708
[7]Li B et al 2016 Appl. Therm. Eng. 94 404
[8]Kefayati G H R 2016 Int. J. Heat Mass Transfer 92 1066
[9]Pop I, Rashidi M and Gorla R S R 1991 Polym.-Plast. Technol. Eng. 30 47
[10]Zheng L C, Zhang X X and Ma X 2008 Chin. Phys. Lett. 25 195
[11]Zou J, Li B and Ji C 2015 Exp. Therm. Fluid Sci. 61 105
[12]Zou J, Ji C, Yuan B G, Ruan X D and Fu X 2013 Phys. Rev. E 87 061002
[13]Napolitano L G 1978 Microgravity Fluid Dynamics (in Proceedings of the 2nd Levitch Conference, Washington, DC, USA)
[14]Zheng L C et al 2004 Chin. Phys. Lett. 21 1983
[15]Al-Mudhaf A and Chamkha A J 2005 Heat Mass Transfer 42 112
[16]Aly E H and Ebaid A 2016 J. Mol. Liq. 215 625
[17]Chen C H 2007 Phys. Lett. A 370 51
[18]Zhang Y et al 2011 Therm. Sci. 15 45
[19]Lin Y H, Zheng L C and Zhang X X 2013 J. Heat Transfer 135 051702
[20]Lin Y H, Zheng L C and Zhang X X 2015 Mech. Time-Depend. Mater. 19 1
[21]Pop I and Ingham D B 2001 Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media (Oxford: Pergamon)
[22]Vafai K 2005 Handbook of Porous Media (New York: Taylor and Francis)
[23]Sheikholeslami M et al 2014 J. Comput. Theor. Nanosci. 11 486
[24]Si X H et al 2011 Chin. Phys. Lett. 28 044702
[25]Navid F, Behnam R and Mohammad M R et al 2015 Int. J. Biomath. 8 1550050
[26]Sheremet M A, Grosan T and Pop I 2015 Transp. Porous Media 106 1
[27]Slavtchev S G and Miladinova S P 1998 Acta Mech. 127 209
[28]Abu-Nada E 2008 Int. J. Heat Fluid Flow 29 242
[29]Zhang C et al 2015 Appl. Math. Modell. 39 165
[30]Brinkman H C 1952 J. Chem. Phys. 20 571
[31]Abu-Nada E and Oztop H F 2009 Int. J. Heat Fluid Flow 30 669
Related articles from Frontiers Journals
[1] REN Cheng, YANG Xing-Tuan, SUN Yan-Fei. Porous Structure Analysis of the Packed Beds in a High-Temperature Reactor Pebble Bed Modules Heat Transfer Test Facility[J]. Chin. Phys. Lett., 2013, 30(2): 104401
[2] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 104401
[3] WANG Wei-Wei, HUAI Xiu-Lan, TAO Yu-Jia. Heat Conduction and Characteristic Size of Fractal Porous Media[J]. Chin. Phys. Lett., 2006, 23(6): 104401
[4] WU Hai-Ling, MA Yuan, PENG Xiao-Feng. Freezing-Thawing Characteristics of Botanical Tissues and Influence of Water Morphology[J]. Chin. Phys. Lett., 2004, 21(2): 104401
[5] YU Bo-Ming, LI Jian-Hua. A Fractal Model for the Transverse Thermal Dispersion Conductivity in Porous Media[J]. Chin. Phys. Lett., 2004, 21(1): 104401
Viewed
Full text


Abstract