Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 104301    DOI: 10.1088/0256-307X/33/10/104301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Second Harmonic Generation of Lamb Wave in Numerical Perspective
Wu-Jun Zhu1, Ming-Xi Deng2, Yan-Xun Xiang1**, Fu-Zhen Xuan1, Chang-Jun Liu1
1Key Laboratory of Pressure Systems and Safety of MOE, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237
2Department of Physics, Logistics Engineering University, Chongqing 401331
Cite this article:   
Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang et al  2016 Chin. Phys. Lett. 33 104301
Download: PDF(773KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influences of phase and group velocity matching on cumulative second harmonic generation of Lamb waves are investigated in numerical perspective. Finite element simulations of nonlinear Lamb wave propagation are performed for Lamb wave mode pairs with exact and approximate phase velocity matching, with and without group velocity matching, respectively. The evolution of time-domain second harmonic Lamb waves is analyzed with the propagation distance. The amplitudes of primary and second harmonic waves are calculated to characterize the acoustic nonlinearity. The results verify that phase velocity matching is necessary for generation of the cumulative second harmonic Lamb wave in numerical perspective, while group velocity matching is demonstrated to not be a necessary condition.
Received: 12 June 2016      Published: 27 October 2016
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51325504, 11474093, 11622430 and 11474361, the National Key Research and Development Program of China (2016YFC0801903-02), and the Fundamental Research Funds for the Central Universities.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/104301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/104301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wu-Jun Zhu
Ming-Xi Deng
Yan-Xun Xiang
Fu-Zhen Xuan
Chang-Jun Liu
[1]Deng M X 1999 J. Appl. Phys. 85 3051
[2]de Lima W J N and Hamilton M F 2003 J. Sound Vib. 265 819
[3]Deng M X 2003 J. Appl. Phys. 94 4152
[4]Kim C S and Jhang K Y 2012 Chin. Phys. Lett. 29 060702
[5]Liu Y, Chillara V K and Lissenden C J 2013 J. Sound Vib. 332 4517
[6]Xiang Y X, Deng M X, Xuan F Z, Chen H and Chen D Y 2012 Chin. Phys. Lett. 29 106202
[7]Xiang Y X, Zhu W J, Liu C J, Xuan F Z, Wang Y N and Kuang W C 2015 NDTE Int. 72 41
[8]Cantrell J H and Yost W T 2013 J. Appl. Phys. 113 153506
[9]Sagar S P, Metya A K, Ghosh M and Sivaprasad S 2011 Mater. Sci. Eng. A 528 2895
[10]Pau A and Lanza di Scalea F 2015 J. Acoust. Soc. Am. 137 1529
[11]Matsuda N and Biwa S 2011 J. Appl. Phys. 109 094903
[12]Muller M F, Kim J Y, Qu J and Jacobs L J 2010 J. Acoust. Soc. Am. 127 2141
[13]Deng M X, Xiang Y X and Liu L B 2011 J. Appl. Phys. 109 113525
[14]Zhu W J, Deng M X, Xiang Y X, Xuan F Z and Liu C J 2016 Ultrasonics 68 134
[15]Matsuda N and Biwa S 2012 Jpn. J. Appl. Phys. 51 07GB14
[16]Hong M, Su Z Q, Wang Q, Li C and Qing X L 2014 Ultrasonics 54 770
[17]Auld B 1973 Acoustic Fields and Wave in Solids (New York: Wiley)
[18]Hamilton M F and Blackstock D T 1998 Nonlinear Acoustics (New York: Academic)
[19]Sewell G 2005 The Numerical Solution of Ordinary and Partial Differential Equations (New York: Wiley)
[20]Kim J Y, Jacobs L J, Qu J and Littles J W 2006 J. Acoust. Soc. Am. 120 1266
Related articles from Frontiers Journals
[1] Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 104301
[2] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 104301
[3] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 104301
[4] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 104301
[5] Hong-Hui Xue, Feng Shan, Xia-Sheng Guo, Juan Tu, Dong Zhang. Cavitation Bubble Collapse near a Curved Wall by the Multiple-Relaxation-Time Shan–Chen Lattice Boltzmann Model[J]. Chin. Phys. Lett., 2017, 34(8): 104301
[6] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 104301
[7] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 104301
[8] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 104301
[9] Ming-Liang Li, Ming-Xi Deng, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2016, 33(12): 104301
[10] Wei-Li Wang, Yu-Hao Wu, Xiao-Yu Lu, Bing-Bo Wei. A Videographic Study of Dynamic Phase Separation for Immiscible Solutions under Acoustic Levitation Condition[J]. Chin. Phys. Lett., 2016, 33(12): 104301
[11] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 104301
[12] Zhe-Fan Peng, Wei-Jun Lin, Shi-Lei Liu, Chang Su, Hai-Lan Zhang, Xiu-Ming Wang. Phase Relation of Harmonics in Nonlinear Focused Ultrasound[J]. Chin. Phys. Lett., 2016, 33(08): 104301
[13] Ting-Bo Fan, Juan Tu, Lin-Jiao Luo, Xia-Sheng Guo, Pin-Tong Huang, Dong Zhang. The Relationship of Cavitation to the Negative Acoustic Pressure Amplitude in Ultrasonic Therapy[J]. Chin. Phys. Lett., 2016, 33(08): 104301
[14] DENG Ming-Xi, GAO Guang-Jian, LI Ming-Liang. Experimental Observation of Cumulative Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube[J]. Chin. Phys. Lett., 2015, 32(12): 104301
[15] CAO Hui, HUANG Wan-Jun, QIAO Jia-Ting, WANG Yun-Peng, ZHAO Hai-Jun. Research on Vibration Mechanism of Plant Cell Membrane with Ultrasonic Irradiation[J]. Chin. Phys. Lett., 2015, 32(03): 104301
Viewed
Full text


Abstract