FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Widely Tunable Photonic-Assisted Microwave Notch Filter with High Linearity Using a Dual-Parallel Mach–Zehnder Modulator |
Xin Wang1,2,3, Ye Deng2, Wen-Ting Wang2, Hai-Qing Yuan2, Jin-Hua Bai2, Yu Liu2** |
1Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 2Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 3University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Xin Wang, Ye Deng, Wen-Ting Wang et al 2016 Chin. Phys. Lett. 33 104202 |
|
|
Abstract A widely tunable microwave photonic (MWP) notch filter with high linearity based on a dual-parallel Mach–Zehnder modulator (DPMZM) is proposed and experimentally demonstrated. The motivation of this work lies in the fact that the MWP notch filter previously reported has nonlinear distortions generally induced by the nonlinear property of electro-optic devices. In this scheme, even-order modulated sidebands at the DPMZM output are effectively suppressed by properly adjusting bias voltages of the DPMZM, which are the dominant factor to induce the nonlinear distortions into the MWP notch filter. The proposed scheme is theoretically analyzed and experimentally verified.
|
|
Received: 09 May 2016
Published: 27 October 2016
|
|
PACS: |
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.30.Lr
|
(Modulation and optical transfer functions)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61335004 and 61275031, and the High-Tech Research and Development Program of China under Grant No 2013AA014401. |
|
|
[1] | Capmany J, Ortega B et al 2006 J. Lightwave Technol. 24 201 | [2] | Yao J P 2009 J. Lightwave Technol. 27 314 | [3] | Capmany J and Novak D 2007 Nat. Photon. 1 319 | [4] | Seeds A J 2002 IEEE Trans. Microwave Theory Tech. 50 877 | [5] | Capmany J, Mora J et al 2013 J. Lightwave Technol. 31 571 | [6] | Marti J and Griol A 1998 Electron. Lett. 34 2140 | [7] | Minasian R, Alameh K et al 2001 IEEE Trans. Microwave Theory Tech. 49 1894 | [8] | Sancho J, Bourderionnet J et al 2012 Nat. Commun. 3 1075 | [9] | Supradeepa V R, Long C M et al 2012 Nat. Photon. 6 186 | [10] | Zou X, Li W et al 2013 IEEE Trans. Microwave Theory Tech. 61 3470 | [11] | Rasras M, Tu K et al 2009 J. Lightwave Technol. 27 2105 | [12] | Palací J, Villanueva G E et al 2010 IEEE Photon. Technol. Lett. 22 1276 | [13] | Dong J, Liu L et al 2013 IEEE Photon. J. 5 5500307 | [14] | Savchenkov A A, Liang W et al 2009 Opt. Lett. 34 1318 | [15] | Yi X and Minasian R A 2009 Electron. Lett. 45 362 | [16] | Li W, Li M et al 2012 IEEE Trans. Microwave Theory Tech. 60 1287 | [17] | Deng Y and Li M et al 2014 IEEE Photon. J. 6 5500908 | [18] | Zhang W W and Minasian R A 2012 IEEE Photon. Technol. Lett. 24 1182 | [19] | Li W, Zhu N H et al 2010 Chin. Phys. Lett. 27 104204 | [20] | Tao R, Feng X et al 2012 IEEE Photon. Technol. Lett. 24 1097 | [21] | Hu S L, Li L W et al 2014 IEEE Photon. Technol. Lett. 26 1466 | [22] | Li W, Sun W H et al 2014 IEEE Photon. Technol. Lett. 26 866 | [23] | Zhang F Z and Ge X Z et al 2013 Opt. Lett. 38 4491 | [24] | Rius M, Mora J et al 2012 Opt. Express 20 8871 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|