ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap |
Jun-Juan Shang1,2,3, Kai-Feng Cui1,2,3, Jian Cao1,2, Shao-Mao Wang1,2,3, Si-Jia Chao1,2,3, Hua-Lin Shu1,2**, Xue-Ren Huang1,2** |
1Key Laboratory of Atom Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3University of Chinese Academy of Sciences, Beijing 100049
|
|
Cite this article: |
Jun-Juan Shang, Kai-Feng Cui, Jian Cao et al 2016 Chin. Phys. Lett. 33 103701 |
|
|
Abstract The $^{27}$Al$^+$ ion optical clock is one of the most attractive optical clocks due to its own advantages such as low black-body radiation shift at room temperature and insensitivity to the magnetic drift. However, it cannot be laser-cooled directly in the absence of 167 nm laser to date. This problem can be solved by sympathetic cooling. In this work, a linear Paul trap is used to trap both $^{40}$Ca$^{+}$ and $^{27}$Al$^+$ ions simultaneously, and a single Doppler-cooled $^{40}$Ca$^+$ ion is employed to sympathetically cool a single $^{27}$Al$^+$ ion. Thus a 'bright-dark' two-ion crystal has been successfully synthesized. The temperature of the crystal has been estimated to be about 7 mK by measuring the ratio of carrier and sideband spectral intensities. Finally, the dark ion is proved to be an $^{27}$Al$^+$ ion by precise measuring of the ion crystal's secular motion frequency, which means that it is a great step for our $^{27}$Al$^+$ quantum logic clock.
|
|
Received: 29 April 2016
Published: 27 October 2016
|
|
|
|
Fund: Supported by the National High Technology Research and Development Program of China under Grant No 2012AA120701, and the National Natural Science Foundation of China under Grant No 11174326. |
|
|
[1] | Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 | [2] | Dube P, Madej A A, Shiner A and Jian B 2015 Phys. Rev. A 92 042119 | [3] | Godun R M, Nisbet-Jones P B, Jones R J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801 | [4] | Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503 | [5] | Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808 | [6] | Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 | [7] | Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mcnally R L, Zhang W, Barret M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 | [8] | Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 | [9] | Dehmelt H G 1982 IEEE Trans. Instrum. Meas. IM-31 83 | [10] | Yu N, Dehmelt H and Nagourney W 1992 Proc. Natl. Acad. Sci. USA 89 7289 | [11] | Rosenband T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J C J, Bergquist J C and Wineland D J 2007 Phys. Rev. Lett. 98 220801 | [12] | Rosenband T, Itano W M, Schmidt P O, Hume D B, Koelemeij J C J, Bergquist J C and Wineland D J 2006 Proceedings of the 20th European Frequency and Time Forum p 289 | [13] | Hume D B 2010 PhD Dissertation (Lexington: Kentucky University) | [14] | Rohde H, Gulde S T, Roos C F, Barton P A, Leibfried D, Eschner J, Schmidt-Kaler F and Blatt R 2001 J. Opt. A: Pure Appl. Opt. 3 S34 | [15] | Hayasaka K 2012 Appl. Phys. B 107 965 | [16] | Kielpinski D, King B E, Myatt C J, Sackett C A, Turchette Q A, Itano W M, Monroe C, Wineland D J and Zurek W H 2000 Phys. Rev. A 61 032310 | [17] | Wübbena J B, Amairi S, Mandel O and Schmidt P O 2012 Phys. Rev. A 85 043412 | [18] | Barrett M D, DeMarco B, Schaetz T, Meyer V, Leibfried D, Britton J, Chiaverini J, Itano W M, Jelenkovic B, Jost J D, Langer C, Rosenband, T and Winelandet D J 2003 Phys. Rev. A 68 059904 | [19] | Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. Lett. 32 083701 | [20] | Bernard J E, Madej A A, Marmet L, Whitford B G, Siemsen K J and Cundy S 1999 Phys. Rev. Lett. 82 3228 | [21] | Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 | [22] | Guggemos M, Heinrich D, Herrera-Sancho O, Blatt R and Roos C 2015 New J. Phys. 17 103001 | [23] | Morigi G and Walther H 2001 Eur. Phys. J. D 13 261 | [24] | James D F V 1998 Appl. Phys. B 66 181 | [25] | Khanyile N B, Shu G and Brown K R 2015 Nat. Commun. 6 7825 | [26] | Urabe S, Watanabe M, Imajo H, Hayasaka K, Tanaka U and Ohmukai R 1998 Appl. Phys. B 67 223 | [27] | Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|