ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM |
Qiang Wang1,2**, Yi-Ge Lin1, Fei Meng1,3, Ye Li1,2, Bai-Ke Lin1,2, Er-Jun Zang1, Tian-Chu Li1, Zhan-Jun Fang1 |
1National Institute of Metrology, Beijing 100029 2Department of Precision Instrument, Tsinghua University, Beijing 100084 3School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
|
|
Cite this article: |
Qiang Wang, Yi-Ge Lin, Fei Meng et al 2016 Chin. Phys. Lett. 33 103201 |
|
|
Abstract We report on the magic wavelength measurement of our optical lattice clock based on fermion strontium atoms at the National Institute of Metrology (NIM). A Ti:sapphire solid state laser locked to a reference cavity inside a temperature-stabilized vacuum chamber is employed to generate the optical lattice. The laser frequency is measured by an erbium fiber frequency comb. The trap depth is modulated by varying the lattice laser power via an acousto-optic modulator. We obtain the frequency shift coefficient at this lattice wavelength by measuring the differential frequency shift of the clock transition of the strontium atoms at different trap depths, and the frequency shift coefficient at this lattice wavelength is obtained. We measure the frequency shift coefficients at different lattice frequencies around the magic wavelength and linearly fit the measurement data, and the magic wavelength is calculated to be 368554672(44) MHz.
|
|
Received: 26 April 2016
Published: 27 October 2016
|
|
PACS: |
32.60.+i
|
(Zeeman and Stark effects)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
45.50.Tn
|
(Collisions)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 91336212. |
|
|
[1] | Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 | [2] | Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 | [3] | Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mcnally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896 | [4] | Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185 | [5] | Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M, Swallows M D, Campbell S L and Ye J 2012 Phys. Rev. Lett. 109 230801 | [6] | Katori H 2002 Proc. 6th Symposium on Frequency Standards and Metrology (Singapore) p 323 | [7] | Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001 | [8] | Katori H, Takamoto M, Pal'chikov V G and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 | [9] | Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Ye J 2007 Phys. Rev. A 76 022510 | [10] | Brusch A, Le Target R, Baillard X, Mathilde F and Lemonde P 2006 Phys. Rev. Lett. 96 103003 | [11] | Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L and Hoyt C W 2008 Phys. Rev. Lett. 100 103002 | [12] | Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J and Lemonde P 2011 Phys. Rev. Lett. 106 210801 | [13] | Lemonde P and Wolf P 2005 Phys. Rev. A 72 033409 | [14] | Campbell G K, Ludlow A D, Blatt S, Thomsen J W, Martin M J, de Miranda M H G, Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner T, Parker T E and Jefferts S R 2008 Metrologia 45 539 | [15] | Wang Q, Lin Y G, Li Y, Lin B K, Meng F, Zang E J, Li T C and Fang Z J 2014 Chin. Phys. Lett. 31 123201 | [16] | Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601 | [17] | Gibble K 2009 Phys. Rev. Lett. 103 113202 | [18] | Leo P J, Julienne P S, Mies F H and Williams C J 2001 Phys. Rev. Lett. 86 3743 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|