Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 100503    DOI: 10.1088/0256-307X/33/10/100503
GENERAL |
Complex Networks from Chaotic Time Series on Riemannian Manifold
Jian-Cheng Sun**
School of Software and Communication Engineering, Jiangxi University of Finance and Economics, Nanchang 330013
Cite this article:   
Jian-Cheng Sun 2016 Chin. Phys. Lett. 33 100503
Download: PDF(634KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Complex networks are important paradigms for analyzing the complex systems as they allow understanding the structural properties of systems composed of different interacting entities. In this work we propose a reliable method for constructing complex networks from chaotic time series. We first estimate the covariance matrices, then a geodesic-based distance between the covariance matrices is introduced. Consequently the network can be constructed on a Riemannian manifold where the nodes and edges correspond to the covariance matrix and geodesic-based distance, respectively. The proposed method provides us with an intrinsic geometry viewpoint to understand the time series.
Received: 12 July 2016      Published: 27 October 2016
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61362024.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/100503       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/100503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian-Cheng Sun
[1]Bezsudnov I V and Snarskii A A 2014 Physica A 414 53
[2]Small M 2013 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013) 2509
[3]Zhao Y, Weng T and Ye S 2014 Phys. Rev. E 90 012804
[4]Gao Z K, Hu L D and Jin N D 2013 Chin. Phys. B 22 050507
[5]Gao Z and Jin N 2009 Phys. Rev. E 79 066303
[6]Yang Y and Yang H 2008 Physica A 387 1381
[7]Xu X, Zhang J and Small M 2008 Proc. Natl. Acad. Sci. USA 105 19601
[8]Baydogan M G and Runger G 2015 Data Min. Knowledge Discovery 29 400
[9]Ferreira H and Ferreira M 2015 J. Multivar. Anal. 137 82
[10]Ebert-Uphoff I and Deng Y 2012 Geophys. Res. Lett. 39 157
[11]Romano M C, Thiel M, Kurths J and von Bloh W 2004 Phys. Lett. A 330 214
[12]Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[13]Amari S 2014 Entropy 16 2131
[14]Pennec X, Fillard P and Ayache N 2006 Int. J. Comput. Vision 66 41
[15]Fiori S 2009 Cognit. Comput. 1 279
[16]Fiori S 2011 Neurocomputing 74 983
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 100503
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 100503
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 100503
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 100503
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 100503
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 100503
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 100503
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 100503
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 100503
[10] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 100503
[11] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 100503
[12] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 100503
[13] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 100503
[14] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 100503
[15] TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong, YANG Jun-Zhong. Collective Dynamics for Network-Organized Identical Excitable Nodes[J]. Chin. Phys. Lett., 2015, 32(02): 100503
Viewed
Full text


Abstract